anomys commited on
Commit
c4a8446
1 Parent(s): 1d02fd2

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:2160
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: Are there any special events for kids? (variation 72)
16
+ sentences:
17
+ - No, pets are not allowed.
18
+ - Yes, there are special events for kids like the Love-themed Movie Night on February
19
+ 17 and Sunday Family Picnic on March 18.
20
+ - The mall's address is Miyapur Main Rd, ICRISAT Colony, Madeenaguda, Hyderabad,
21
+ Telangana 500050
22
+ - source_sentence: Who built the chatbot? (variation 16)
23
+ sentences:
24
+ - Most stores accept cash, credit cards, debit cards, and UPI payments. Individual
25
+ stores may have additional payment options.
26
+ - The chatbot was built by KreativeChat. Their contact information is [email protected].
27
+ - Yes, there is a Valentine's Day Dinner event on February 14, 2024, from 7:00 PM
28
+ to 10:00 PM at the Rooftop Restaurant.
29
+ - source_sentence: Where can I find details about the Weekend Jazz Brunch? (variation
30
+ 100)
31
+ sentences:
32
+ - Our mall chatbot is your primary source for information and assistance. For specific
33
+ inquiries or to meet with mall management, please visit the 6th-floor mall management
34
+ front desk.
35
+ - The Weekend Jazz Brunch takes place at the Jazz Cafe on February 18, 2024, from
36
+ 11:00 AM to 2:00 PM.
37
+ - Washrooms are conveniently located on each floor. Ask our chatbot for a floor
38
+ plan with marked washrooms.
39
+ - source_sentence: Is there a Lost and Found section in the mall? (variation 1)
40
+ sentences:
41
+ - No, charging points are not available in the mall.
42
+ - Yes, there is a Valentine's Day Dinner event on February 14, 2024, from 7:00 PM
43
+ to 10:00 PM at the Rooftop Restaurant.
44
+ - 'Yes, there is. Please fill out this Google Form: [https://forms.gle/7R9rW1xamhktqBXh9]'
45
+ - source_sentence: Where are the washrooms located? (variation 95)
46
+ sentences:
47
+ - The chatbot was built by KreativeChat. Their contact information is [email protected].
48
+ - No, there are no information desks or customer desks. For inquiries, please leave
49
+ a message or ask the chatbot. The relevant person will respond accordingly.
50
+ - Washrooms are conveniently located on each floor. Ask our chatbot for a floor
51
+ plan with marked washrooms.
52
+ ---
53
+
54
+ # SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
55
+
56
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) on the train dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
57
+
58
+ ## Model Details
59
+
60
+ ### Model Description
61
+ - **Model Type:** Sentence Transformer
62
+ - **Base model:** [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) <!-- at revision 2430568290bb832d22ad5064f44dd86cf0240142 -->
63
+ - **Maximum Sequence Length:** 512 tokens
64
+ - **Output Dimensionality:** 384 tokens
65
+ - **Similarity Function:** Cosine Similarity
66
+ - **Training Dataset:**
67
+ - train
68
+ <!-- - **Language:** Unknown -->
69
+ <!-- - **License:** Unknown -->
70
+
71
+ ### Model Sources
72
+
73
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
74
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
75
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
76
+
77
+ ### Full Model Architecture
78
+
79
+ ```
80
+ SentenceTransformer(
81
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
82
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
83
+ (2): Normalize()
84
+ )
85
+ ```
86
+
87
+ ## Usage
88
+
89
+ ### Direct Usage (Sentence Transformers)
90
+
91
+ First install the Sentence Transformers library:
92
+
93
+ ```bash
94
+ pip install -U sentence-transformers
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+ ```python
99
+ from sentence_transformers import SentenceTransformer
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SentenceTransformer("anomys/gsm-finetunned-v3")
103
+ # Run inference
104
+ sentences = [
105
+ 'Where are the washrooms located? (variation 95)',
106
+ 'Washrooms are conveniently located on each floor. Ask our chatbot for a floor plan with marked washrooms.',
107
+ 'The chatbot was built by KreativeChat. Their contact information is [email protected].',
108
+ ]
109
+ embeddings = model.encode(sentences)
110
+ print(embeddings.shape)
111
+ # [3, 384]
112
+
113
+ # Get the similarity scores for the embeddings
114
+ similarities = model.similarity(embeddings, embeddings)
115
+ print(similarities.shape)
116
+ # [3, 3]
117
+ ```
118
+
119
+ <!--
120
+ ### Direct Usage (Transformers)
121
+
122
+ <details><summary>Click to see the direct usage in Transformers</summary>
123
+
124
+ </details>
125
+ -->
126
+
127
+ <!--
128
+ ### Downstream Usage (Sentence Transformers)
129
+
130
+ You can finetune this model on your own dataset.
131
+
132
+ <details><summary>Click to expand</summary>
133
+
134
+ </details>
135
+ -->
136
+
137
+ <!--
138
+ ### Out-of-Scope Use
139
+
140
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
141
+ -->
142
+
143
+ <!--
144
+ ## Bias, Risks and Limitations
145
+
146
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
147
+ -->
148
+
149
+ <!--
150
+ ### Recommendations
151
+
152
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
153
+ -->
154
+
155
+ ## Training Details
156
+
157
+ ### Training Dataset
158
+
159
+ #### train
160
+
161
+ * Dataset: train
162
+ * Size: 2,160 training samples
163
+ * Columns: <code>question</code> and <code>response</code>
164
+ * Approximate statistics based on the first 1000 samples:
165
+ | | question | response |
166
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
167
+ | type | string | string |
168
+ | details | <ul><li>min: 12 tokens</li><li>mean: 15.57 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 33.72 tokens</li><li>max: 82 tokens</li></ul> |
169
+ * Samples:
170
+ | question | response |
171
+ |:-----------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
172
+ | <code>Is there public WiFi available in the mall? (variation 4)</code> | <code>Sorry, no WiFi is available for the public.</code> |
173
+ | <code>What are the special promotions available? (variation 65)</code> | <code>Special promotions include up to 50% off at Reliance Trends, 20% off new arrivals at Style Union, and more.</code> |
174
+ | <code>What are the mall hours of operation? (variation 47)</code> | <code>GSM Mall & Multiplex is open from 11:00 AM to 10:00 PM on weekdays and weekends. Individual store timings may vary.</code> |
175
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
176
+ ```json
177
+ {
178
+ "scale": 20.0,
179
+ "similarity_fct": "cos_sim"
180
+ }
181
+ ```
182
+
183
+ ### Evaluation Dataset
184
+
185
+ #### train
186
+
187
+ * Dataset: train
188
+ * Size: 540 evaluation samples
189
+ * Columns: <code>question</code> and <code>response</code>
190
+ * Approximate statistics based on the first 1000 samples:
191
+ | | question | response |
192
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
193
+ | type | string | string |
194
+ | details | <ul><li>min: 12 tokens</li><li>mean: 15.45 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 33.56 tokens</li><li>max: 82 tokens</li></ul> |
195
+ * Samples:
196
+ | question | response |
197
+ |:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|
198
+ | <code>What offers are available at the food court? (variation 12)</code> | <code>Offers at the food court include Buy One Get One Half Off Shakes at Thick Shake Factory, Taco Tuesday Special at California Burrito, and more.</code> |
199
+ | <code>What is the date and time for the Spring Fashion Show? (variation 14)</code> | <code>The Spring Fashion Show is on March 24, 2024, from 6:00 PM to 8:00 PM at the Mall Runway.</code> |
200
+ | <code>Where is GSM Mall & Multiplex located? (variation 30)</code> | <code>The mall's address is Miyapur Main Rd, ICRISAT Colony, Madeenaguda, Hyderabad, Telangana 500050</code> |
201
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
202
+ ```json
203
+ {
204
+ "scale": 20.0,
205
+ "similarity_fct": "cos_sim"
206
+ }
207
+ ```
208
+
209
+ ### Training Hyperparameters
210
+ #### Non-Default Hyperparameters
211
+
212
+ - `eval_strategy`: steps
213
+ - `per_device_train_batch_size`: 16
214
+ - `per_device_eval_batch_size`: 16
215
+ - `num_train_epochs`: 1
216
+ - `warmup_ratio`: 0.1
217
+ - `fp16`: True
218
+ - `batch_sampler`: no_duplicates
219
+
220
+ #### All Hyperparameters
221
+ <details><summary>Click to expand</summary>
222
+
223
+ - `overwrite_output_dir`: False
224
+ - `do_predict`: False
225
+ - `eval_strategy`: steps
226
+ - `prediction_loss_only`: True
227
+ - `per_device_train_batch_size`: 16
228
+ - `per_device_eval_batch_size`: 16
229
+ - `per_gpu_train_batch_size`: None
230
+ - `per_gpu_eval_batch_size`: None
231
+ - `gradient_accumulation_steps`: 1
232
+ - `eval_accumulation_steps`: None
233
+ - `learning_rate`: 5e-05
234
+ - `weight_decay`: 0.0
235
+ - `adam_beta1`: 0.9
236
+ - `adam_beta2`: 0.999
237
+ - `adam_epsilon`: 1e-08
238
+ - `max_grad_norm`: 1.0
239
+ - `num_train_epochs`: 1
240
+ - `max_steps`: -1
241
+ - `lr_scheduler_type`: linear
242
+ - `lr_scheduler_kwargs`: {}
243
+ - `warmup_ratio`: 0.1
244
+ - `warmup_steps`: 0
245
+ - `log_level`: passive
246
+ - `log_level_replica`: warning
247
+ - `log_on_each_node`: True
248
+ - `logging_nan_inf_filter`: True
249
+ - `save_safetensors`: True
250
+ - `save_on_each_node`: False
251
+ - `save_only_model`: False
252
+ - `restore_callback_states_from_checkpoint`: False
253
+ - `no_cuda`: False
254
+ - `use_cpu`: False
255
+ - `use_mps_device`: False
256
+ - `seed`: 42
257
+ - `data_seed`: None
258
+ - `jit_mode_eval`: False
259
+ - `use_ipex`: False
260
+ - `bf16`: False
261
+ - `fp16`: True
262
+ - `fp16_opt_level`: O1
263
+ - `half_precision_backend`: auto
264
+ - `bf16_full_eval`: False
265
+ - `fp16_full_eval`: False
266
+ - `tf32`: None
267
+ - `local_rank`: 0
268
+ - `ddp_backend`: None
269
+ - `tpu_num_cores`: None
270
+ - `tpu_metrics_debug`: False
271
+ - `debug`: []
272
+ - `dataloader_drop_last`: False
273
+ - `dataloader_num_workers`: 0
274
+ - `dataloader_prefetch_factor`: None
275
+ - `past_index`: -1
276
+ - `disable_tqdm`: False
277
+ - `remove_unused_columns`: True
278
+ - `label_names`: None
279
+ - `load_best_model_at_end`: False
280
+ - `ignore_data_skip`: False
281
+ - `fsdp`: []
282
+ - `fsdp_min_num_params`: 0
283
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
284
+ - `fsdp_transformer_layer_cls_to_wrap`: None
285
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
286
+ - `deepspeed`: None
287
+ - `label_smoothing_factor`: 0.0
288
+ - `optim`: adamw_torch
289
+ - `optim_args`: None
290
+ - `adafactor`: False
291
+ - `group_by_length`: False
292
+ - `length_column_name`: length
293
+ - `ddp_find_unused_parameters`: None
294
+ - `ddp_bucket_cap_mb`: None
295
+ - `ddp_broadcast_buffers`: False
296
+ - `dataloader_pin_memory`: True
297
+ - `dataloader_persistent_workers`: False
298
+ - `skip_memory_metrics`: True
299
+ - `use_legacy_prediction_loop`: False
300
+ - `push_to_hub`: False
301
+ - `resume_from_checkpoint`: None
302
+ - `hub_model_id`: None
303
+ - `hub_strategy`: every_save
304
+ - `hub_private_repo`: False
305
+ - `hub_always_push`: False
306
+ - `gradient_checkpointing`: False
307
+ - `gradient_checkpointing_kwargs`: None
308
+ - `include_inputs_for_metrics`: False
309
+ - `eval_do_concat_batches`: True
310
+ - `fp16_backend`: auto
311
+ - `push_to_hub_model_id`: None
312
+ - `push_to_hub_organization`: None
313
+ - `mp_parameters`:
314
+ - `auto_find_batch_size`: False
315
+ - `full_determinism`: False
316
+ - `torchdynamo`: None
317
+ - `ray_scope`: last
318
+ - `ddp_timeout`: 1800
319
+ - `torch_compile`: False
320
+ - `torch_compile_backend`: None
321
+ - `torch_compile_mode`: None
322
+ - `dispatch_batches`: None
323
+ - `split_batches`: None
324
+ - `include_tokens_per_second`: False
325
+ - `include_num_input_tokens_seen`: False
326
+ - `neftune_noise_alpha`: None
327
+ - `optim_target_modules`: None
328
+ - `batch_eval_metrics`: False
329
+ - `batch_sampler`: no_duplicates
330
+ - `multi_dataset_batch_sampler`: proportional
331
+
332
+ </details>
333
+
334
+ ### Training Logs
335
+ | Epoch | Step | Training Loss | train loss |
336
+ |:------:|:----:|:-------------:|:----------:|
337
+ | 0.3704 | 50 | 0.087 | 0.0000 |
338
+ | 0.7407 | 100 | 0.0001 | 0.0000 |
339
+
340
+
341
+ ### Framework Versions
342
+ - Python: 3.10.12
343
+ - Sentence Transformers: 3.0.1
344
+ - Transformers: 4.41.2
345
+ - PyTorch: 2.3.0+cu121
346
+ - Accelerate: 0.32.1
347
+ - Datasets: 2.20.0
348
+ - Tokenizers: 0.19.1
349
+
350
+ ## Citation
351
+
352
+ ### BibTeX
353
+
354
+ #### Sentence Transformers
355
+ ```bibtex
356
+ @inproceedings{reimers-2019-sentence-bert,
357
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
358
+ author = "Reimers, Nils and Gurevych, Iryna",
359
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
360
+ month = "11",
361
+ year = "2019",
362
+ publisher = "Association for Computational Linguistics",
363
+ url = "https://arxiv.org/abs/1908.10084",
364
+ }
365
+ ```
366
+
367
+ #### MultipleNegativesRankingLoss
368
+ ```bibtex
369
+ @misc{henderson2017efficient,
370
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
371
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
372
+ year={2017},
373
+ eprint={1705.00652},
374
+ archivePrefix={arXiv},
375
+ primaryClass={cs.CL}
376
+ }
377
+ ```
378
+
379
+ <!--
380
+ ## Glossary
381
+
382
+ *Clearly define terms in order to be accessible across audiences.*
383
+ -->
384
+
385
+ <!--
386
+ ## Model Card Authors
387
+
388
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
389
+ -->
390
+
391
+ <!--
392
+ ## Model Card Contact
393
+
394
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
395
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:085d43b2a2c68d25410cd039e8e4edb8db740fbaca5e5eb9452c4ad61a9de358
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 250,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff