|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch OmniGenome model."""
|
|
|
|
import math
|
|
import random
|
|
import warnings
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
from transformers import add_start_docstrings, PreTrainedModel
|
|
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
BaseModelOutputWithPoolingAndCrossAttentions,
|
|
MaskedLMOutput,
|
|
SequenceClassifierOutput,
|
|
TokenClassifierOutput,
|
|
)
|
|
|
|
from transformers.pytorch_utils import (
|
|
find_pruneable_heads_and_indices,
|
|
prune_linear_layer,
|
|
)
|
|
|
|
from transformers.utils import (
|
|
logging,
|
|
add_code_sample_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
)
|
|
|
|
from .configuration_omnigenome import OmniGenomeConfig
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CHECKPOINT_FOR_DOC = "yangheng/OmniGenome-52M"
|
|
_CONFIG_FOR_DOC = "OmniGenomeConfig"
|
|
|
|
OmniGenome_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
"yangheng/OmniGenome-52M",
|
|
|
|
|
|
]
|
|
|
|
|
|
def rotate_half(x):
|
|
x1, x2 = x.chunk(2, dim=-1)
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
def apply_rotary_pos_emb(x, cos, sin):
|
|
cos = cos[:, :, : x.shape[-2], :]
|
|
sin = sin[:, :, : x.shape[-2], :]
|
|
|
|
return (x * cos) + (rotate_half(x) * sin)
|
|
|
|
|
|
def gelu(x):
|
|
"""
|
|
This is the gelu implementation from the original OmniGenome repo. Using F.gelu yields subtly wrong results.
|
|
"""
|
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
|
|
|
|
|
def symmetrize(x):
|
|
"Make layer symmetric in final two dimensions, used for contact prediction."
|
|
return x + x.transpose(-1, -2)
|
|
|
|
|
|
def average_product_correct(x):
|
|
"Perform average product correct, used for contact prediction."
|
|
a1 = x.sum(-1, keepdims=True)
|
|
a2 = x.sum(-2, keepdims=True)
|
|
a12 = x.sum((-1, -2), keepdims=True)
|
|
|
|
avg = a1 * a2
|
|
avg.div_(a12)
|
|
normalized = x - avg
|
|
return normalized
|
|
|
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module):
|
|
"""
|
|
Rotary position embeddings based on those in
|
|
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
|
|
matrices which depend on their relative positions.
|
|
"""
|
|
|
|
def __init__(self, dim: int):
|
|
super().__init__()
|
|
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
|
inv_freq = inv_freq
|
|
self.register_buffer("inv_freq", inv_freq)
|
|
|
|
self._seq_len_cached = None
|
|
self._cos_cached = None
|
|
self._sin_cached = None
|
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=2):
|
|
seq_len = x.shape[seq_dimension]
|
|
|
|
|
|
|
|
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
|
|
self._seq_len_cached = seq_len
|
|
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
|
|
self.inv_freq
|
|
)
|
|
freqs = torch.outer(t, self.inv_freq)
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
|
|
|
self._cos_cached = emb.cos()[None, None, :, :]
|
|
self._sin_cached = emb.sin()[None, None, :, :]
|
|
|
|
return self._cos_cached, self._sin_cached
|
|
|
|
def forward(
|
|
self, q: torch.Tensor, k: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
|
|
k, seq_dimension=-2
|
|
)
|
|
|
|
return (
|
|
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
|
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
|
)
|
|
|
|
|
|
|
|
class OmniGenomeContactPredictionHead(nn.Module):
|
|
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
bias=True,
|
|
eos_idx: int = 2,
|
|
):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.eos_idx = eos_idx
|
|
self.regression = nn.Linear(in_features, 1, bias)
|
|
self.activation = nn.Sigmoid()
|
|
|
|
def forward(self, tokens, attentions):
|
|
|
|
eos_mask = tokens.ne(self.eos_idx).to(attentions)
|
|
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
|
|
attentions = attentions * eos_mask[:, None, None, :, :]
|
|
attentions = attentions[..., :-1, :-1]
|
|
|
|
attentions = attentions[..., 1:, 1:]
|
|
batch_size, layers, heads, seqlen, _ = attentions.size()
|
|
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
|
|
|
|
|
|
attentions = attentions.to(
|
|
self.regression.weight.device
|
|
)
|
|
attentions = average_product_correct(symmetrize(attentions))
|
|
attentions = attentions.permute(0, 2, 3, 1)
|
|
return self.activation(self.regression(attentions).squeeze(3))
|
|
|
|
|
|
|
|
class OmniGenomeEmbeddings(nn.Module):
|
|
"""
|
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.word_embeddings = nn.Embedding(
|
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
|
)
|
|
|
|
if config.emb_layer_norm_before:
|
|
self.layer_norm = nn.LayerNorm(
|
|
config.hidden_size, eps=config.layer_norm_eps
|
|
)
|
|
else:
|
|
self.layer_norm = None
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
self.position_embedding_type = getattr(
|
|
config, "position_embedding_type", "absolute"
|
|
)
|
|
self.register_buffer(
|
|
"position_ids",
|
|
torch.arange(config.max_position_embeddings).expand((1, -1)),
|
|
persistent=False,
|
|
)
|
|
|
|
self.padding_idx = config.pad_token_id
|
|
self.position_embeddings = nn.Embedding(
|
|
config.max_position_embeddings,
|
|
config.hidden_size,
|
|
padding_idx=self.padding_idx,
|
|
)
|
|
self.token_dropout = config.token_dropout
|
|
self.mask_token_id = config.mask_token_id
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
position_ids=None,
|
|
inputs_embeds=None,
|
|
past_key_values_length=0,
|
|
):
|
|
if position_ids is None:
|
|
if input_ids is not None:
|
|
|
|
position_ids = create_position_ids_from_input_ids(
|
|
input_ids, self.padding_idx, past_key_values_length
|
|
)
|
|
else:
|
|
position_ids = self.create_position_ids_from_inputs_embeds(
|
|
inputs_embeds
|
|
)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.word_embeddings(input_ids)
|
|
|
|
|
|
|
|
embeddings = inputs_embeds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.token_dropout:
|
|
embeddings = embeddings.masked_fill(
|
|
(input_ids == self.mask_token_id).unsqueeze(-1), 0.0
|
|
)
|
|
mask_ratio_train = (
|
|
0.15 * 0.8
|
|
)
|
|
src_lengths = attention_mask.sum(-1)
|
|
mask_ratio_observed = (input_ids == self.mask_token_id).sum(
|
|
-1
|
|
).float() / src_lengths
|
|
embeddings = (
|
|
embeddings
|
|
* (1 - mask_ratio_train)
|
|
/ (1 - mask_ratio_observed)[:, None, None]
|
|
).to(embeddings.dtype)
|
|
|
|
if self.position_embedding_type == "absolute":
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
embeddings = embeddings + position_embeddings
|
|
|
|
if self.layer_norm is not None:
|
|
embeddings = self.layer_norm(embeddings)
|
|
if attention_mask is not None:
|
|
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(
|
|
embeddings.dtype
|
|
)
|
|
|
|
|
|
return embeddings
|
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
|
"""
|
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
|
|
|
Args:
|
|
inputs_embeds: torch.Tensor
|
|
|
|
Returns: torch.Tensor
|
|
"""
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
sequence_length = input_shape[1]
|
|
|
|
position_ids = torch.arange(
|
|
self.padding_idx + 1,
|
|
sequence_length + self.padding_idx + 1,
|
|
dtype=torch.long,
|
|
device=inputs_embeds.device,
|
|
)
|
|
return position_ids.unsqueeze(0).expand(input_shape)
|
|
|
|
|
|
|
|
class OmniGenomeSelfAttention(nn.Module):
|
|
def __init__(self, config, position_embedding_type=None):
|
|
super().__init__()
|
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
|
config, "embedding_size"
|
|
):
|
|
raise ValueError(
|
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
|
f"heads ({config.num_attention_heads})"
|
|
)
|
|
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
|
self.position_embedding_type = position_embedding_type or getattr(
|
|
config, "position_embedding_type", "absolute"
|
|
)
|
|
self.rotary_embeddings = None
|
|
if (
|
|
self.position_embedding_type == "relative_key"
|
|
or self.position_embedding_type == "relative_key_query"
|
|
):
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
self.distance_embedding = nn.Embedding(
|
|
2 * config.max_position_embeddings - 1, self.attention_head_size
|
|
)
|
|
elif self.position_embedding_type == "rotary":
|
|
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
|
|
|
|
self.is_decoder = config.is_decoder
|
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
|
new_x_shape = x.size()[:-1] + (
|
|
self.num_attention_heads,
|
|
self.attention_head_size,
|
|
)
|
|
x = x.view(new_x_shape)
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.Tensor]:
|
|
mixed_query_layer = self.query(hidden_states)
|
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None
|
|
|
|
if is_cross_attention and past_key_value is not None:
|
|
|
|
key_layer = past_key_value[0]
|
|
value_layer = past_key_value[1]
|
|
attention_mask = encoder_attention_mask
|
|
elif is_cross_attention:
|
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
|
attention_mask = encoder_attention_mask
|
|
elif past_key_value is not None:
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
|
else:
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
|
|
|
|
|
|
|
|
|
|
|
query_layer = query_layer * self.attention_head_size**-0.5
|
|
|
|
if self.is_decoder:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer)
|
|
|
|
if self.position_embedding_type == "rotary":
|
|
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
|
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
|
|
|
if (
|
|
self.position_embedding_type == "relative_key"
|
|
or self.position_embedding_type == "relative_key_query"
|
|
):
|
|
seq_length = hidden_states.size()[1]
|
|
position_ids_l = torch.arange(
|
|
seq_length, dtype=torch.long, device=hidden_states.device
|
|
).view(-1, 1)
|
|
position_ids_r = torch.arange(
|
|
seq_length, dtype=torch.long, device=hidden_states.device
|
|
).view(1, -1)
|
|
distance = position_ids_l - position_ids_r
|
|
positional_embedding = self.distance_embedding(
|
|
distance + self.max_position_embeddings - 1
|
|
)
|
|
positional_embedding = positional_embedding.to(
|
|
dtype=query_layer.dtype
|
|
)
|
|
|
|
if self.position_embedding_type == "relative_key":
|
|
relative_position_scores = torch.einsum(
|
|
"bhld,lrd->bhlr", query_layer, positional_embedding
|
|
)
|
|
attention_scores = attention_scores + relative_position_scores
|
|
elif self.position_embedding_type == "relative_key_query":
|
|
relative_position_scores_query = torch.einsum(
|
|
"bhld,lrd->bhlr", query_layer, positional_embedding
|
|
)
|
|
relative_position_scores_key = torch.einsum(
|
|
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
|
)
|
|
attention_scores = (
|
|
attention_scores
|
|
+ relative_position_scores_query
|
|
+ relative_position_scores_key
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
|
|
attention_scores = attention_scores + attention_mask
|
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs)
|
|
|
|
|
|
if head_mask is not None:
|
|
attention_probs = attention_probs * head_mask
|
|
|
|
context_layer = torch.matmul(attention_probs, value_layer)
|
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
context_layer = context_layer.view(new_context_layer_shape)
|
|
|
|
outputs = (
|
|
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
|
)
|
|
|
|
if self.is_decoder:
|
|
outputs = outputs + (past_key_value,)
|
|
return outputs
|
|
|
|
|
|
|
|
class OmniGenomeSelfOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = hidden_states + input_tensor
|
|
return hidden_states
|
|
|
|
|
|
|
|
class OmniGenomeAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.self = OmniGenomeSelfAttention(config)
|
|
self.output = OmniGenomeSelfOutput(config)
|
|
self.pruned_heads = set()
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
def prune_heads(self, heads):
|
|
if len(heads) == 0:
|
|
return
|
|
heads, index = find_pruneable_heads_and_indices(
|
|
heads,
|
|
self.self.num_attention_heads,
|
|
self.self.attention_head_size,
|
|
self.pruned_heads,
|
|
)
|
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index)
|
|
self.self.key = prune_linear_layer(self.self.key, index)
|
|
self.self.value = prune_linear_layer(self.self.value, index)
|
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
|
self.self.all_head_size = (
|
|
self.self.attention_head_size * self.self.num_attention_heads
|
|
)
|
|
self.pruned_heads = self.pruned_heads.union(heads)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
past_key_value=None,
|
|
output_attentions=False,
|
|
):
|
|
hidden_states_ln = self.LayerNorm(hidden_states)
|
|
self_outputs = self.self(
|
|
hidden_states_ln,
|
|
attention_mask,
|
|
head_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
past_key_value,
|
|
output_attentions,
|
|
)
|
|
attention_output = self.output(self_outputs[0], hidden_states)
|
|
outputs = (attention_output,) + self_outputs[
|
|
1:
|
|
]
|
|
return outputs
|
|
|
|
|
|
|
|
class OmniGenomeIntermediate(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = gelu(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
|
|
class OmniGenomeOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = hidden_states + input_tensor
|
|
return hidden_states
|
|
|
|
|
|
|
|
class OmniGenomeLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
|
self.seq_len_dim = 1
|
|
self.attention = OmniGenomeAttention(config)
|
|
self.is_decoder = config.is_decoder
|
|
self.add_cross_attention = config.add_cross_attention
|
|
if self.add_cross_attention:
|
|
if not self.is_decoder:
|
|
raise RuntimeError(
|
|
f"{self} should be used as a decoder model if cross attention is added"
|
|
)
|
|
self.crossattention = OmniGenomeAttention(config)
|
|
self.intermediate = OmniGenomeIntermediate(config)
|
|
self.output = OmniGenomeOutput(config)
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
past_key_value=None,
|
|
output_attentions=False,
|
|
):
|
|
|
|
self_attn_past_key_value = (
|
|
past_key_value[:2] if past_key_value is not None else None
|
|
)
|
|
self_attention_outputs = self.attention(
|
|
hidden_states,
|
|
attention_mask,
|
|
head_mask,
|
|
output_attentions=output_attentions,
|
|
past_key_value=self_attn_past_key_value,
|
|
)
|
|
attention_output = self_attention_outputs[0]
|
|
|
|
|
|
if self.is_decoder:
|
|
outputs = self_attention_outputs[1:-1]
|
|
present_key_value = self_attention_outputs[-1]
|
|
else:
|
|
outputs = self_attention_outputs[
|
|
1:
|
|
]
|
|
|
|
cross_attn_present_key_value = None
|
|
if self.is_decoder and encoder_hidden_states is not None:
|
|
if not hasattr(self, "crossattention"):
|
|
raise AttributeError(
|
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
|
|
" with cross-attention layers by setting `config.add_cross_attention=True`"
|
|
)
|
|
|
|
|
|
cross_attn_past_key_value = (
|
|
past_key_value[-2:] if past_key_value is not None else None
|
|
)
|
|
cross_attention_outputs = self.crossattention(
|
|
attention_output,
|
|
attention_mask,
|
|
head_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
cross_attn_past_key_value,
|
|
output_attentions,
|
|
)
|
|
attention_output = cross_attention_outputs[0]
|
|
outputs = (
|
|
outputs + cross_attention_outputs[1:-1]
|
|
)
|
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1]
|
|
present_key_value = present_key_value + cross_attn_present_key_value
|
|
|
|
layer_output = self.feed_forward_chunk(attention_output)
|
|
|
|
outputs = (layer_output,) + outputs
|
|
|
|
|
|
if self.is_decoder:
|
|
outputs = outputs + (present_key_value,)
|
|
return outputs
|
|
|
|
def feed_forward_chunk(self, attention_output):
|
|
attention_output_ln = self.LayerNorm(attention_output)
|
|
intermediate_output = self.intermediate(attention_output_ln)
|
|
layer_output = self.output(intermediate_output, attention_output)
|
|
return layer_output
|
|
|
|
|
|
|
|
class OmniGenomeEncoder(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer = nn.ModuleList(
|
|
[OmniGenomeLayer(config) for _ in range(config.num_hidden_layers)]
|
|
)
|
|
self.emb_layer_norm_after = nn.LayerNorm(
|
|
config.hidden_size, eps=config.layer_norm_eps
|
|
)
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
past_key_values=None,
|
|
use_cache=None,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
return_dict=True,
|
|
):
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
|
"`use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attentions = () if output_attentions else None
|
|
all_cross_attentions = (
|
|
() if output_attentions and self.config.add_cross_attention else None
|
|
)
|
|
|
|
next_decoder_cache = () if use_cache else None
|
|
for i, layer_module in enumerate(self.layer):
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
|
past_key_value = past_key_values[i] if past_key_values is not None else None
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
layer_module.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
layer_head_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
past_key_value,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
layer_outputs = layer_module(
|
|
hidden_states,
|
|
attention_mask,
|
|
layer_head_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
past_key_value,
|
|
output_attentions,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
if use_cache:
|
|
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
|
if self.config.add_cross_attention:
|
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
|
|
|
if self.emb_layer_norm_after:
|
|
hidden_states = self.emb_layer_norm_after(hidden_states)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [
|
|
hidden_states,
|
|
next_decoder_cache,
|
|
all_hidden_states,
|
|
all_self_attentions,
|
|
all_cross_attentions,
|
|
]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_decoder_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
cross_attentions=all_cross_attentions,
|
|
)
|
|
|
|
|
|
|
|
class OmniGenomePooler(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.activation = nn.Tanh()
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
first_token_tensor = hidden_states[:, 0]
|
|
pooled_output = self.dense(first_token_tensor)
|
|
pooled_output = self.activation(pooled_output)
|
|
return pooled_output
|
|
|
|
|
|
|
|
class OmniGenomePreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = OmniGenomeConfig
|
|
base_model_prefix = "OmniGenome"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = [
|
|
"OmniGenomeLayer",
|
|
"OmniGenomeFoldTriangularSelfAttentionBlock",
|
|
"OmniGenomeEmbeddings",
|
|
]
|
|
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights"""
|
|
if isinstance(module, nn.Linear):
|
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
elif isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
|
|
|
|
OmniGenome_START_DOCSTRING = r"""
|
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`OmniGenomeConfig`]): Model configuration class with all the parameters of the
|
|
model. Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
OmniGenome_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
|
Indices of input sequence tokens in the vocabulary.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.max_position_embeddings - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare OmniGenome Model transformer outputting raw hidden-states without any specific head on top.",
|
|
OmniGenome_START_DOCSTRING,
|
|
)
|
|
|
|
class OmniGenomeModel(OmniGenomePreTrainedModel):
|
|
"""
|
|
|
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
|
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
|
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
|
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
|
|
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
|
"""
|
|
|
|
def __init__(self, config, add_pooling_layer=True):
|
|
super().__init__(config)
|
|
self.config = config
|
|
|
|
self.embeddings = OmniGenomeEmbeddings(config)
|
|
self.encoder = OmniGenomeEncoder(config)
|
|
|
|
self.pooler = OmniGenomePooler(config) if add_pooling_layer else None
|
|
|
|
self.contact_head = OmniGenomeContactPredictionHead(
|
|
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
|
|
)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embeddings.word_embeddings
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embeddings.word_embeddings = value
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
"""
|
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
|
class PreTrainedModel
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
|
|
|
@add_start_docstrings_to_model_forward(
|
|
OmniGenome_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")
|
|
)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
|
r"""
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
|
the model is configured as a decoder.
|
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
"""
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
if self.config.is_decoder:
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
else:
|
|
use_cache = False
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError(
|
|
"You cannot specify both input_ids and inputs_embeds at the same time"
|
|
)
|
|
elif input_ids is not None:
|
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
|
input_shape = input_ids.size()
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
batch_size, seq_length = input_shape
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
|
|
past_key_values_length = (
|
|
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
|
)
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(
|
|
((batch_size, seq_length + past_key_values_length)), device=device
|
|
)
|
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
|
attention_mask, input_shape
|
|
)
|
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None:
|
|
(
|
|
encoder_batch_size,
|
|
encoder_sequence_length,
|
|
_,
|
|
) = encoder_hidden_states.size()
|
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
|
if encoder_attention_mask is None:
|
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
|
encoder_extended_attention_mask = self.invert_attention_mask(
|
|
encoder_attention_mask
|
|
)
|
|
else:
|
|
encoder_extended_attention_mask = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
|
|
|
embedding_output = self.embeddings(
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
attention_mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
past_key_values_length=past_key_values_length,
|
|
)
|
|
encoder_outputs = self.encoder(
|
|
embedding_output,
|
|
attention_mask=extended_attention_mask,
|
|
head_mask=head_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_extended_attention_mask,
|
|
past_key_values=past_key_values,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
sequence_output = encoder_outputs[0]
|
|
pooled_output = (
|
|
self.pooler(sequence_output) if self.pooler is not None else None
|
|
)
|
|
|
|
if not return_dict:
|
|
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions(
|
|
last_hidden_state=sequence_output,
|
|
pooler_output=pooled_output,
|
|
past_key_values=encoder_outputs.past_key_values,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
cross_attentions=encoder_outputs.cross_attentions,
|
|
)
|
|
|
|
def predict_contacts(self, tokens, attention_mask):
|
|
attns = self(
|
|
tokens,
|
|
attention_mask=attention_mask,
|
|
return_dict=True,
|
|
output_attentions=True,
|
|
).attentions
|
|
attns = torch.stack(attns, dim=1)
|
|
|
|
|
|
|
|
|
|
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
|
|
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
|
|
return self.contact_head(tokens, attns)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""OmniGenome Model with a `language modeling` head on top.""",
|
|
OmniGenome_START_DOCSTRING,
|
|
)
|
|
|
|
class OmniGenomeForMaskedLM(OmniGenomePreTrainedModel):
|
|
_tied_weights_keys = ["lm_head.decoder.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
if config.is_decoder:
|
|
logger.warning(
|
|
"If you want to use `OmniGenomeForMaskedLM` make sure `config.is_decoder=False` for "
|
|
"bi-directional self-attention."
|
|
)
|
|
|
|
self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
|
|
self.lm_head = OmniGenomeLMHead(config)
|
|
self.init_weights()
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head.decoder
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head.decoder = new_embeddings
|
|
|
|
@add_start_docstrings_to_model_forward(
|
|
OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
|
)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=MaskedLMOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
mask="<mask>",
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, MaskedLMOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
|
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
|
Used to hide legacy arguments that have been deprecated.
|
|
"""
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
outputs = self.OmniGenome(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
sequence_output = outputs[0]
|
|
prediction_scores = self.lm_head(sequence_output)
|
|
|
|
masked_lm_loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
labels = labels.to(prediction_scores.device)
|
|
masked_lm_loss = loss_fct(
|
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
|
)
|
|
|
|
if not return_dict:
|
|
output = (prediction_scores,) + outputs[2:]
|
|
return (
|
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
|
)
|
|
|
|
return MaskedLMOutput(
|
|
loss=masked_lm_loss,
|
|
logits=prediction_scores,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def predict_contacts(self, tokens, attention_mask):
|
|
return self.OmniGenome.predict_contacts(tokens, attention_mask=attention_mask)
|
|
|
|
|
|
|
|
class OmniGenomeLMHead(nn.Module):
|
|
"""OmniGenome Head for masked language modeling."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
|
|
|
def forward(self, features, **kwargs):
|
|
x = self.dense(features)
|
|
x = gelu(x)
|
|
x = self.layer_norm(x)
|
|
|
|
|
|
x = self.decoder(x) + self.bias
|
|
return x
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
OmniGenome Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
|
output) e.g. for GLUE tasks.
|
|
""",
|
|
OmniGenome_START_DOCSTRING,
|
|
)
|
|
class OmniGenomeForSequenceClassification(OmniGenomePreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.config = config
|
|
self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
|
|
self.classifier = OmniGenomeClassificationHead(config)
|
|
self.init_weights()
|
|
|
|
@add_start_docstrings_to_model_forward(
|
|
OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
|
)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=SequenceClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
outputs = self.OmniGenome(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
last_hidden_state = outputs[0]
|
|
logits = self.classifier(last_hidden_state)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
labels = labels.to(logits.device)
|
|
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (
|
|
labels.dtype == torch.long or labels.dtype == torch.int
|
|
):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(logits, labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
OmniGenome Model with a token classification head on top (a linear layer on top of the hidden-states output)
|
|
Note that this model is pre-trained for RNA secondary structure prediction and can be used for zero-shot RNA
|
|
secondary structure prediction. Please find more advanced usages at https://github.com/yangheng95/OmniGenome
|
|
This model can be fine-tuned for other token classification tasks.
|
|
""",
|
|
OmniGenome_START_DOCSTRING,
|
|
)
|
|
|
|
class OmniGenomeForTokenClassification(OmniGenomePreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
|
|
self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.classifier = torch.nn.Linear(self.config.hidden_size, self.num_labels)
|
|
self.softmax = nn.Softmax(dim=-1)
|
|
self.init_weights()
|
|
|
|
@add_start_docstrings_to_model_forward(
|
|
OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
|
)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=TokenClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, TokenClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
|
"""
|
|
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
outputs = self.OmniGenome(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
last_hidden_state = outputs[0]
|
|
last_hidden_state = self.dense(last_hidden_state)
|
|
logits = self.classifier(last_hidden_state)
|
|
logits = self.softmax(logits)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return TokenClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
@staticmethod
|
|
def verify_secondary_structure(structure):
|
|
structure = list(structure)
|
|
left_brackets = []
|
|
right_brackets = []
|
|
for i, char in enumerate(structure):
|
|
if char == "(":
|
|
left_brackets.append(i)
|
|
elif char == ")":
|
|
if left_brackets:
|
|
left_brackets.pop()
|
|
else:
|
|
right_brackets.append(i)
|
|
|
|
for i in left_brackets:
|
|
structure[i] = "."
|
|
for i in right_brackets:
|
|
structure[i] = "."
|
|
|
|
structure = "".join(structure)
|
|
|
|
return structure
|
|
|
|
def predict_rna_structure(self, sequence: str, **kwargs) -> List[str]:
|
|
r"""
|
|
Load the pretrained OmniGenome Model to do zero-shot prediction of the secondary structure
|
|
of a sequence given the sequence
|
|
"""
|
|
if self.tokenizer is None:
|
|
tokenizer = kwargs.get("tokenizer", None)
|
|
if tokenizer is None:
|
|
from transformers import AutoTokenizer
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
|
|
else:
|
|
self.tokenizer = tokenizer
|
|
|
|
inputs = self.tokenizer(
|
|
sequence, return_tensors="pt", padding="max_length", truncation=True
|
|
)
|
|
input_ids = inputs["input_ids"]
|
|
attention_mask = inputs["attention_mask"]
|
|
outputs = self.forward(input_ids, attention_mask, **kwargs)
|
|
|
|
logits = torch.argmax(outputs.logits, dim=-1)
|
|
lengths = torch.sum(torch.ne(torch.tensor(0), attention_mask), dim=-1)
|
|
structures = []
|
|
for i, length in enumerate(lengths):
|
|
structure = logits[i, :length].cpu().numpy()
|
|
structure = "".join(self.config.id2label[label] for label in structure)
|
|
if self.config.verify_ss:
|
|
structure = self.verify_secondary_structure(structure)
|
|
structures.append(structure)
|
|
return structures
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
This is not a standard Seq2Seq model. Instead, this model is designed for RNA design tasks.
|
|
This is the OmniGenome Model with a simple genetic algorithm based RNA design head on top.
|
|
""",
|
|
OmniGenome_START_DOCSTRING,
|
|
)
|
|
class OmniGenomeModelForSeq2SeqLM(OmniGenomePreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
|
|
self.lm_head = OmniGenomeLMHead(config)
|
|
self.num_generation = config.num_generation
|
|
self.num_population = config.num_population
|
|
self.init_weights()
|
|
|
|
self.tokenizer = None
|
|
self.predict_structure = None
|
|
|
|
warnings.warn(
|
|
f"This model {self.__class__.__name__} is not a real Seq2Seq model. "
|
|
f"Instead, this model is designed for RNA design tasks"
|
|
)
|
|
|
|
@add_start_docstrings_to_model_forward(
|
|
OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
|
)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=TokenClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = True,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, TokenClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
|
"""
|
|
raise NotImplementedError(
|
|
"This model is not designed for standard Seq2Seq tasks. "
|
|
"Use model.rna_sequence_design() for RNA sequences design instead."
|
|
)
|
|
|
|
def rna_sequence_design(
|
|
self, structure: str, predict_structure_func=None, **kwargs
|
|
) -> List[str]:
|
|
"""
|
|
Assemble the RNA sequence given the reference sequence structure
|
|
"""
|
|
if self.tokenizer is None:
|
|
tokenizer = kwargs.get("tokenizer", None)
|
|
if tokenizer is None:
|
|
from transformers import AutoTokenizer
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
|
|
else:
|
|
self.tokenizer = tokenizer
|
|
|
|
candidates = self.genetic_algorithm_for_rna_design(
|
|
structure, predict_structure_func=None, **kwargs
|
|
)
|
|
|
|
return candidates
|
|
|
|
def genetic_algorithm_for_rna_design(
|
|
self, structure, predict_structure_func=None, **kwargs
|
|
):
|
|
if predict_structure_func is None:
|
|
import ViennaRNA
|
|
|
|
def predict_structure(sequence):
|
|
return ViennaRNA.fold(sequence)[0]
|
|
|
|
predict_structure_func = predict_structure
|
|
|
|
self.predict_structure = predict_structure_func
|
|
mutation_ratio = kwargs.get("mutation_ratio", 0.5)
|
|
num_population = kwargs.get("num_population", self.num_population)
|
|
num_generation = kwargs.get("num_generation", self.num_generation)
|
|
import tqdm
|
|
|
|
population = self.init_population(structure, num_population)
|
|
population = self.mlm_mutate(
|
|
population, structure, mutation_ratio=mutation_ratio
|
|
)
|
|
for generation_id in tqdm.tqdm(
|
|
range(num_generation), desc="Designing RNA Sequence"
|
|
):
|
|
population_fitness = self.sequence_fitness(population, structure)[
|
|
:num_population
|
|
]
|
|
population = sorted(
|
|
zip(population, population_fitness), key=lambda x: x[1]
|
|
)[:num_population]
|
|
population = [x[0] for x in population]
|
|
next_generation = population
|
|
next_generation += self.crossover(population, structure)
|
|
next_generation += self.mlm_mutate(
|
|
next_generation, structure, mutation_ratio
|
|
)
|
|
fitness_values = self.sequence_fitness(next_generation, structure)
|
|
next_generation = sorted(
|
|
zip(next_generation, fitness_values), key=lambda x: x[1]
|
|
)
|
|
|
|
candidate_sequences = []
|
|
for sequence, fitness in next_generation:
|
|
if fitness == 0:
|
|
candidate_sequences.append(sequence)
|
|
else:
|
|
break
|
|
if candidate_sequences:
|
|
return candidate_sequences
|
|
print(
|
|
f"Generation {generation_id}: {next_generation[0][0]} with fitness {next_generation[0][1]}"
|
|
)
|
|
population = [x[0] for x in next_generation[:num_population]]
|
|
|
|
return []
|
|
|
|
def init_population(self, structure, num_population):
|
|
|
|
population = []
|
|
mlm_inputs = []
|
|
|
|
for _ in range(
|
|
num_population
|
|
):
|
|
|
|
masked_sequence = [
|
|
random.choice(["A", "G", "C", "T", "<mask>"])
|
|
for _ in range(len(structure))
|
|
]
|
|
masked_sequence_str = "".join(masked_sequence)
|
|
mlm_inputs.append(f"{masked_sequence_str}<eos>{''.join(structure)}")
|
|
|
|
|
|
outputs = self.mlm_predict(mlm_inputs, structure)
|
|
|
|
|
|
for i in range(len(outputs)):
|
|
sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
|
|
fixed_sequence = [
|
|
x if x in "AGCT" else random.choice(["G", "C"])
|
|
for x, y in zip(sequence, list(mlm_inputs[i].replace("<mask>", "$")))
|
|
]
|
|
population.append("".join(fixed_sequence))
|
|
|
|
return population
|
|
|
|
def mlm_mutate(self, population, structure, mutation_ratio):
|
|
def mutate(sequence, mutation_rate):
|
|
sequence = np.array(list(sequence), dtype=np.str_)
|
|
probability_matrix = np.full(sequence.shape, mutation_rate)
|
|
masked_indices = np.random.rand(*sequence.shape) < probability_matrix
|
|
sequence[masked_indices] = "$"
|
|
mut_seq = "".join(sequence.tolist()).replace("$", "<mask>")
|
|
return mut_seq
|
|
|
|
|
|
mlm_inputs = []
|
|
masked_sequences = []
|
|
|
|
|
|
for sequence in population:
|
|
|
|
masked_sequence = mutate(sequence, mutation_ratio)
|
|
masked_sequences.append(masked_sequence)
|
|
mlm_inputs.append(f"{masked_sequence}<eos>{''.join(structure)}")
|
|
|
|
|
|
outputs = self.mlm_predict(mlm_inputs, structure)
|
|
|
|
mut_population = []
|
|
|
|
|
|
for i in range(len(outputs)):
|
|
sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
|
|
fixed_sequence = [
|
|
x if x in "AGCT" else random.choice(["G", "C"])
|
|
for x, y in zip(
|
|
sequence, list(masked_sequences[i].replace("<mask>", "$"))
|
|
)
|
|
]
|
|
mut_population.append("".join(fixed_sequence))
|
|
|
|
return mut_population
|
|
|
|
def crossover(self, population, structure):
|
|
crossover_population = []
|
|
batch_crossover_inputs = []
|
|
for i in range(len(population)):
|
|
parent1, parent2 = random.choices(population, k=2)
|
|
pos = random.randint(1, len(parent1) - 1)
|
|
child1 = parent1[:pos] + "<mask>" * len(parent2[pos:])
|
|
child2 = "<mask>" * len(parent1[:pos]) + parent2[pos:]
|
|
batch_crossover_inputs.append(f"{child1}<eos>{structure}")
|
|
batch_crossover_inputs.append(f"{child2}<eos>{structure}")
|
|
|
|
outputs = self.mlm_predict(batch_crossover_inputs, structure)
|
|
|
|
for i in range(len(outputs)):
|
|
sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
|
|
fixed_sequence = [
|
|
x if x in "AGCT" else random.choice(["G", "C"])
|
|
for x, y in zip(
|
|
sequence, list(batch_crossover_inputs[i].replace("<mask>", "$"))
|
|
)
|
|
]
|
|
crossover_population.append("".join(fixed_sequence))
|
|
|
|
return crossover_population
|
|
|
|
def sequence_fitness(self, sequences, structure):
|
|
fitness_values = []
|
|
structures = [self.predict_structure(sequence) for sequence in sequences]
|
|
for predicted_structure in structures:
|
|
scores = []
|
|
for i in range(len(predicted_structure)):
|
|
if predicted_structure[i] == structure[i]:
|
|
scores.append(1)
|
|
elif (
|
|
predicted_structure[i] == ")"
|
|
and structure[i] == "("
|
|
or predicted_structure[i] == "("
|
|
and structure[i] == ")"
|
|
):
|
|
scores.append(-3)
|
|
else:
|
|
scores.append(0)
|
|
score = 1 - sum(scores) / len(structure)
|
|
fitness_values.append(score)
|
|
return fitness_values
|
|
|
|
def mlm_predict(self, mlm_inputs, structure):
|
|
batch_size = 4
|
|
all_outputs = []
|
|
from transformers import set_seed
|
|
|
|
set_seed(random.randint(0, 99999999), deterministic=False)
|
|
|
|
with torch.no_grad():
|
|
for i in range(0, len(mlm_inputs), batch_size):
|
|
batch_mlm_inputs = self.tokenizer(
|
|
mlm_inputs[i : i + batch_size],
|
|
padding=True,
|
|
max_length=len(mlm_inputs[0]) // 2,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
batch_mlm_inputs = batch_mlm_inputs.to(self.device)
|
|
outputs = self.OmniGenome(**batch_mlm_inputs)[0]
|
|
outputs = self.lm_head(outputs)
|
|
outputs = outputs.argmax(dim=-1)
|
|
all_outputs.append(outputs)
|
|
outputs = torch.cat(all_outputs, dim=0)
|
|
return outputs[:, 1 : 1 + len(structure)]
|
|
|
|
|
|
|
|
class OmniGenomeClassificationHead(nn.Module):
|
|
"""Head for sentence-level classification tasks."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
def forward(self, features, **kwargs):
|
|
x = features[:, 0, :]
|
|
x = self.dropout(x)
|
|
x = self.dense(x)
|
|
x = torch.tanh(x)
|
|
x = self.dropout(x)
|
|
x = self.out_proj(x)
|
|
return x
|
|
|
|
|
|
def create_position_ids_from_input_ids(
|
|
input_ids, padding_idx, past_key_values_length=0
|
|
):
|
|
"""
|
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
|
are ignored. This is modified from fairseq's `utils.make_positions`.
|
|
|
|
Args:
|
|
x: torch.Tensor x:
|
|
|
|
Returns: torch.Tensor
|
|
"""
|
|
|
|
mask = input_ids.ne(padding_idx).int()
|
|
incremental_indices = (
|
|
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
|
) * mask
|
|
return incremental_indices.long() + padding_idx
|
|
|