{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cae418fcf00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720442936012991492, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0dZD5kzss98ENHvjqUTb5IHRY8AKL0vAAAAAAAAAAAuqkYvqxZKj4I/ek9BxZ4vpigRr04sW09AAAAAAAAAADNqyO9Q+g4PyLdPT1s4ga/WVFFvYvu/jwAAAAAAAAAAM3K3j2PBky6LdBvOhFfVTNCFb45e9+KuQAAgD8AAIA/yiRuvs5Hyz2gm8Y+uaZXvmuBhT2oFGw9AAAAAAAAAAA6hCK+m2quPn0q5T3h1Mm+QxaGvXk0pj0AAAAAAAAAAAAwLD6eEIY/HeywPn48Hb/sWAk+yxs6PQAAAAAAAAAAoBdTPvZCe7yWNHA6DT6RuJ/F2b2u55C5AACAPwAAgD+NZuE9yaMFPTqwAb6hUTK+ERyXujWujbsAAAAAAAAAADrSKT4Pcma8jAc5u5MUZjnpVsS9m95uOgAAgD8AAIA/QDfKvUjvl7pOkQK4pHHeslLkvjpHyhY3AACAPwAAAAAz7++84HoBP634+Twnb7m+/RXrvKJwUT0AAAAAAAAAAK3uTz6lPn8+9/gUvRMeiL5LkIQ9XnhxvQAAAAAAAAAAmo67vgFJgz96bv2+TfQ4v7MoxL5KbH69AAAAAAAAAABKuJQ+9gAJvFacTLnFNno3N59rvf4TWjgAAAAAAACAP2Y3NL0K1125X/I0Ohrw0Lg0qdg7WPRMuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7uOxrzoU2MAWyUS8qMAXSUR0CmxgScCo0idX2UKGgGR0Bx1Jf8dgfEaAdLxGgIR0CmxhQ/xDsudX2UKGgGR0BcxDw+dK/VaAdN6ANoCEdApscc67ulXXV9lChoBkdAcH9OmzjWCmgHS71oCEdApsdQAuIykHV9lChoBkdAcFd84PwuumgHTT0BaAhHQKbHXA+pwS91fZQoaAZHQHI47vgFX7toB01EAWgIR0Cmx6xNqQA/dX2UKGgGR0BvS3BpHqeLaAdL2mgIR0Cmx7lfReC1dX2UKGgGR0BguTPldTo/aAdN6ANoCEdApsj7NpudgHV9lChoBkdAcNM28IzFdmgHS9hoCEdApskpeE7GN3V9lChoBkdAcSk9lmOENGgHS9NoCEdApslbm0VrRHV9lChoBkdAcglcEeQuEmgHS/poCEdApsnT7EYO2HV9lChoBkdAccRFgDzRQmgHS75oCEdApvhF/YraunV9lChoBkdAS4T3Zf2K22gHS7NoCEdApvh45Lh73XV9lChoBkdAcRi7yQPqcGgHS/9oCEdApvliqp97W3V9lChoBkdAcRvE61b7j2gHS+toCEdApvmKcmShanV9lChoBkdAcfiDbah6B2gHTR0BaAhHQKb5rtG/etV1fZQoaAZHQHFHOuq3mV9oB0vGaAhHQKb6WMiKR+11fZQoaAZHQHKA5Uo8ZDRoB0voaAhHQKb79xnWatt1fZQoaAZHQG8Oxlg+hXdoB0vKaAhHQKb8K9YfW+Z1fZQoaAZHQHGUZdfLLZBoB0vfaAhHQKb8YFzuF6B1fZQoaAZHQGRuUrTYukFoB03oA2gIR0Cm/MqkM1CPdX2UKGgGR0BkUwAuIyj6aAdN6ANoCEdApvzzM5fdAXV9lChoBkdAYrN4TK1XvGgHTegDaAhHQKb899ORDCx1fZQoaAZHQHEr+1KGtZFoB0vXaAhHQKb9i9bor4F1fZQoaAZHQG5Vucc2itdoB0u6aAhHQKb930ihWYF1fZQoaAZHQHEpxB7eEZloB0u9aAhHQKb/l+yZ8a51fZQoaAZHQHJU7n5i3G5oB0vFaAhHQKb/+PrfLs91fZQoaAZHQHHq3/5tWMloB0vPaAhHQKcA/ZQpF1B1fZQoaAZHQHDwxouf29NoB0v0aAhHQKcBLnQpnYh1fZQoaAZHQHLMDsD4gzRoB0vkaAhHQKcBQyCWeH11fZQoaAZHQG2uBS1maphoB0u6aAhHQKcBSNCJGfB1fZQoaAZHQHEgzqv/zatoB0uzaAhHQKcBgXF98Z11fZQoaAZHQHDFLOmixmloB00PAWgIR0CnAlO/k/8mdX2UKGgGR0Bj6P2f029+aAdN6ANoCEdApwOJ9Vmz0HV9lChoBkdAXf0iRnvlVGgHTegDaAhHQKcDkBRQ7911fZQoaAZHQHBWWGM4tHxoB0vUaAhHQKcEAZv1lGx1fZQoaAZHQHChwmeDnNhoB0vjaAhHQKcFod1dPcl1fZQoaAZHQHAhPqgRK6FoB0vhaAhHQKcF3URWcSZ1fZQoaAZHQG3tOy/sVtZoB0voaAhHQKcF7dKujh11fZQoaAZHQHFZc7U5MlFoB0vBaAhHQKcGQlWOp851fZQoaAZHQGRRP420iQloB03oA2gIR0CnBmo1UEPldX2UKGgGR0BjeNcIJJGwaAdN6ANoCEdApwZ+avzOHHV9lChoBkdAcoGLmp2lmGgHTT8BaAhHQKcHhtFa0Qd1fZQoaAZHQHE7/hhpg1FoB002AWgIR0CnB5C1iONpdX2UKGgGR0BxnnFMqSX/aAdLzWgIR0CnB9KWkadddX2UKGgGR0BvS7cfvF3qaAdLxGgIR0CnCQ0th/iHdX2UKGgGR0BwN2F49ovjaAdLwmgIR0CnCTXZGrjpdX2UKGgGR0BxcIp6QeV+aAdL42gIR0CnCdzl1bJPdX2UKGgGR0BeZdN8E3bVaAdN6ANoCEdApwnzyQPqcHV9lChoBkdAcpQpvgm7a2gHS9doCEdApwoq26TW5HV9lChoBkdAXt9AjY7JXGgHTegDaAhHQKcKK0JF9a51fZQoaAZHQHCf9pItlI5oB0vAaAhHQKcKyBK+SKZ1fZQoaAZHQHCL4vN/vv1oB0vOaAhHQKcLDos7MgV1fZQoaAZHQHD3F2zOX3RoB00jAWgIR0CnCzT6BRQ8dX2UKGgGR0BxDHdqL0jDaAdL+2gIR0CnDHEjopx4dX2UKGgGR0Bgef+OwPiDaAdN6ANoCEdApwx9iz9jw3V9lChoBkdAX3/uG9HtnmgHTegDaAhHQKcM2ZgogFJ1fZQoaAZHQHECsEaESM9oB0vIaAhHQKcONga3qiZ1fZQoaAZHQHGP8lb/wRZoB00BAWgIR0CnDzS57PY4dX2UKGgGR0BwrbD63y7PaAdL2GgIR0CnD5iS7oStdX2UKGgGR0Byz0dRzijtaAdNCAFoCEdApw/JazNUwXV9lChoBkdAcJHljEvTPWgHS+toCEdApxCkj3VTaXV9lChoBkdAbYt4cm0E5mgHS9FoCEdApxFehRIjGHV9lChoBkdAcxuekYXO4WgHS/NoCEdApxH0mY0EYHV9lChoBkdAcG1co6S1V2gHS9BoCEdApxLgcWCVbHV9lChoBkdAcSBI55qubWgHTScBaAhHQKcTWPgeii91fZQoaAZHQHGS0pmVZ9xoB0vCaAhHQKcTaNn5BTp1fZQoaAZHQGSZFcpsoDxoB03oA2gIR0CnFAogV45cdX2UKGgGR0B0Zc6IWP92aAdL4WgIR0CnFE4HxBmgdX2UKGgGR0Bt3/bRF7UoaAdLxGgIR0CnFS5ML4N7dX2UKGgGR0BwF9DYywfRaAdL4WgIR0CnFS8ujASGdX2UKGgGR0ByaqTcIqsmaAdNEgFoCEdApxV6ZhKDkHV9lChoBkdAb6CBSUC7smgHS9poCEdApxcyKcd5p3V9lChoBkdAXRFgMMI/q2gHTegDaAhHQKcXb0Gu9vl1fZQoaAZHQF+BAymALApoB03oA2gIR0CnF3Riw0O3dX2UKGgGR0BxeN38n/kvaAdNHAFoCEdApxeOs90RvnV9lChoBkdAcMgi/fwZwWgHS79oCEdApxfEK/mDDnV9lChoBkdAcAf7aIvalGgHS8ZoCEdApxgZAUtZm3V9lChoBkdAcX8Qf6oES2gHTSEBaAhHQKcYyv2Xb/R1fZQoaAZHQHCaGelKsdVoB0vKaAhHQKcZIu2Zy+91fZQoaAZHQHDRuWKMvRJoB0vgaAhHQKcZRF3pwCN1fZQoaAZHQG8h2+GoJiRoB01JAWgIR0CnGYf9YOlPdX2UKGgGR0BklLnNgSezaAdN6ANoCEdApxnQz+FUQ3V9lChoBkdAcl6nJT2nKmgHTRwBaAhHQKcaPJUYKpl1fZQoaAZHQG9FVQQ+UyJoB0u3aAhHQKcaQy+HrQh1fZQoaAZHQHEn0yYXwb5oB0u2aAhHQKcabgdfb9J1fZQoaAZHQHFHRUNrj5toB0vaaAhHQKcbF/JeVs11fZQoaAZHQG91yM98qnZoB0vCaAhHQKcbQyAxzq91fZQoaAZHQHC4M2zfJmxoB0veaAhHQKcbZbpu/Dd1fZQoaAZHQHH0BtDUmUpoB00cAWgIR0CnHAy4nWrfdX2UKGgGR0Biin6oESuhaAdN6ANoCEdApxxVuDSPVHV9lChoBkdAYXaLk0aZQmgHTegDaAhHQKccd7MPjGV1fZQoaAZHQG/d/zSThYNoB0u/aAhHQKcclJ6po9N1fZQoaAZHQGNLhUrCm/FoB03oA2gIR0CnHRAMc6vJdX2UKGgGR0BwvcpkPMB7aAdLvGgIR0CnHTKAjIJadX2UKGgGR0Buh5Gz8gp0aAdLzWgIR0CnHXDqW1MNdX2UKGgGR0BwsmfOD8LsaAdL6WgIR0CnHXS/TLGJdX2UKGgGR0Byuom1IAfdaAdL3WgIR0CnHdm5MDfWdX2UKGgGR0BvGqnzg/C7aAdNMwFoCEdApx3xbbDdg3V9lChoBkdAWf6f029+PWgHTegDaAhHQKceD41xbSt1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}