--- tags: - generated_from_trainer model-index: - name: magnum-v3-27b-r1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: IntervitensInc_gemma-2-27b-chatml model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer #trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: #- path: anthracite-org/stheno-filtered-v1.1 - path: stheno_data.json type: sharegpt conversation: chatml #- path: anthracite-org/kalo-opus-instruct-22k-no-refusal - path: kalo_opus_22k.jsonl type: sharegpt conversation: chatml #- path: anthracite-org/nopm_claude_writing_fixed - path: nopm_claude_dataset.jsonl type: sharegpt conversation: chatml #- path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - path: Epic_Synthstruct.json type: sharegpt conversation: chatml #- path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - path: SynthRP-Gens_processed.json type: sharegpt conversation: chatml chat_template: chatml shuffle_merged_datasets: true default_system_message: "You are an assistant that responds to the user." dataset_prepared_path: magnum-v3-27b-data val_set_size: 0.0 output_dir: ./magnum-v3-27b-r1 sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: magnum-v3-27b-r1 wandb_entity: wandb_watch: wandb_name: attempt-01 wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.000004 plugins: - axolotl.integrations.liger.LigerPlugin liger_cross_entropy: true #liger_rope: true #liger_rms_norm: true #liger_swiglu: true #liger_fused_linear_cross_entropy: true train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true #eager_attention: true warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: /dev/shm/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.03 fsdp: # - full_shard # - auto_wrap fsdp_config: # fsdp_limit_all_gathers: true # fsdp_sync_module_states: true # fsdp_offload_params: true # fsdp_use_orig_params: false # fsdp_cpu_ram_efficient_loading: false # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP # fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer # fsdp_state_dict_type: FULL_STATE_DICT special_tokens: pad_token: "" ```

[Visualize in Weights & Biases](https://wandb.ai/intervitens/magnum-v3-27b-r1/runs/6v1sk0zl) # magnum-v3-27b-r1 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.43.2 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1