lucyknada commited on
Commit
4595920
1 Parent(s): b30c051

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -45
README.md CHANGED
@@ -8,13 +8,38 @@ model-index:
8
  results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
15
  <details><summary>See axolotl config</summary>
16
 
17
- axolotl version: `0.4.1`
18
  ```yaml
19
  base_model: google/gemma-2-9b
20
  model_type: AutoModelForCausalLM
@@ -96,51 +121,23 @@ fsdp:
96
  fsdp_config:
97
  special_tokens:
98
  ```
99
-
100
  </details><br>
101
 
102
- # magnum-v3-9b-customgemma2
103
-
104
- This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on the None dataset.
105
-
106
- ## Model description
107
-
108
- More information needed
109
-
110
- ## Intended uses & limitations
111
-
112
- More information needed
113
-
114
- ## Training and evaluation data
115
-
116
- More information needed
117
-
118
- ## Training procedure
119
-
120
- ### Training hyperparameters
121
-
122
- The following hyperparameters were used during training:
123
- - learning_rate: 6e-06
124
- - train_batch_size: 1
125
- - eval_batch_size: 1
126
- - seed: 42
127
- - distributed_type: multi-GPU
128
- - num_devices: 8
129
- - gradient_accumulation_steps: 8
130
- - total_train_batch_size: 64
131
- - total_eval_batch_size: 8
132
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
133
- - lr_scheduler_type: cosine
134
- - lr_scheduler_warmup_steps: 50
135
- - num_epochs: 2
136
 
137
- ### Training results
138
 
 
 
 
 
 
139
 
 
 
140
 
141
- ### Framework versions
142
 
143
- - Transformers 4.44.0
144
- - Pytorch 2.4.0+cu121
145
- - Datasets 2.20.0
146
- - Tokenizers 0.19.1
 
8
  results: []
9
  ---
10
 
11
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/9ZBUlmzDCnNmQEdUUbyEL.png)
12
+
13
+ This is the 10th in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.
14
+
15
+ This model is fine-tuned on top of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b).
16
+
17
+ ## Prompting
18
+ Model has been Instruct tuned with the customgemma2 formatting. A typical input would look like this:
19
+
20
+ ```py
21
+ """<start_of_turn>system
22
+ system prompt<end_of_turn>
23
+ <start_of_turn>user
24
+ Hi there!<end_of_turn>
25
+ <start_of_turn>model
26
+ Nice to meet you!<end_of_turn>
27
+ <start_of_turn>user
28
+ Can I ask a question?<end_of_turn>
29
+ <start_of_turn>model
30
+ """
31
+ ```
32
+
33
+ ## SillyTavern templates
34
+
35
+ WIP
36
+
37
+ </details><br>
38
+
39
+ ## Axolotl config
40
 
 
41
  <details><summary>See axolotl config</summary>
42
 
 
43
  ```yaml
44
  base_model: google/gemma-2-9b
45
  model_type: AutoModelForCausalLM
 
121
  fsdp_config:
122
  special_tokens:
123
  ```
 
124
  </details><br>
125
 
126
+ ## Credits
127
+ We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
+ We would also like to thank all members of Anthracite who made this finetune possible.
130
 
131
+ - [anthracite-org/stheno-filtered-v1.1](https://huggingface.co/datasets/anthracite-org/stheno-filtered-v1.1)
132
+ - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
133
+ - [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed)
134
+ - [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned)
135
+ - [Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned)
136
 
137
+ ## Training
138
+ The training was done for 2 epochs. We used 8x[H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Recursal AI](https://recursal.ai/) / [Featherless AI](https://featherless.ai/) for the full-parameter fine-tuning of the model.
139
 
140
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
141
 
142
+ ## Safety
143
+ ...