|
python -m torch.distributed.launch \ |
|
--nproc_per_node=8 \ |
|
run_xtreme_s.py \ |
|
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \ |
|
--task="fleurs-asr" \ |
|
--language="en_us" \ |
|
--language_group="western_european_we" \ |
|
--output_dir="xtreme_s_xlsr_300m_fleurs_asr_western_european_nomask" \ |
|
--overwrite_output_dir \ |
|
--num_train_epochs=20 \ |
|
--per_device_train_batch_size=8 \ |
|
--per_device_eval_batch_size=1 \ |
|
--gradient_accumulation_steps=1 \ |
|
--eval_accumulation_steps=10 \ |
|
--learning_rate="3e-4" \ |
|
--ctc_zero_infinity \ |
|
--warmup_steps=1000 \ |
|
--evaluation_strategy="steps" \ |
|
--max_duration_in_seconds=20 \ |
|
--preprocessing_num_workers=16 \ |
|
--save_steps=500 \ |
|
--eval_steps=500 \ |
|
--logging_steps=1 \ |
|
--layerdrop=0.0 \ |
|
--mask_time_prob=0.05 \ |
|
--mask_time_length=10 \ |
|
--mask_feature_prob=0.05 \ |
|
--mask_feature_length=64 \ |
|
--freeze_feature_encoder \ |
|
--gradient_checkpointing \ |
|
--fp16 \ |
|
--fp16_full_eval \ |
|
--group_by_length \ |
|
--do_train \ |
|
--do_eval \ |
|
--do_predict \ |
|
--metric_for_best_model="wer" \ |
|
--greater_is_better=False \ |
|
--load_best_model_at_end \ |
|
--push_to_hub |