File size: 45,123 Bytes
53919ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:95159
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-mpnet-base-dot-v1
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: medial deviation, first metatarsal misalignment
  sentences:
  - "Deviation of the first toe away from the rest of the foot\n\nHallux varus  \n\
    Other namesSandal gap[1]  \nRadiography of the left foot of a young male showing\
    \ progressive hallux varus  \nSpecialtyOrthopedic  \n  \nHallux varus is a deformity\
    \ of the great toe joint where the hallux (great toe) is deviated medially (towards\
    \ the midline of the body) away from the first metatarsal bone. The hallux usually\
    \ moves in the transverse plane. Unlike hallux valgus, also known as hallux abducto\
    \ valgus or bunion, hallux varus is uncommon in the West but it is common in cultures\
    \ where the population remains unshod.\n\n## Photos[edit]\n\n  * \n\n## References[edit]\n\
    \n  1. ^ Weerakkody, Yuranga. \"Sandal gap deformity - Radiology Reference Article\
    \ - Radiopaedia.org\". radiopaedia.org.\n\n## External links[edit]\n\nClassification\n\
    \nD\n\n  * ICD-10: M20.3, Q66.3\n  * ICD-9-CM: 735.1, 755.66\n  * MeSH: D050488\n\
    \n  \n  \n  * v\n  * t\n  * e\n\nAcquired musculoskeletal deformities  \n  \n\
    Upper limb\n\nshoulder"
  - "Touraine (1955), who first described this condition (Touraine, 1941), discovered\
    \ a total of 32 cases in 17 families examined. In 9 of the families, a parent\
    \ and 1 or more children were affected. In 5 families with a total of 15 cases,\
    \ only 2 or more sibs were affected. He quoted an instance of affected mother\
    \ and 4 children. Mental retardation was frequently associated. In a series of\
    \ 40 reported cases reviewed by Dociu et al. (1976), no lentigines were found\
    \ other than those on the face.\n\n  \nInheritance \\- Autosomal dominant Neuro\
    \ \\- Mental retardation Skin \\- Facial lentigines ▲ Close"
  - 'Trisomy 18, also called Edwards syndrome, is a chromosomal condition associated
    with abnormalities in many parts of the body. Individuals with trisomy 18 often
    have slow growth before birth (intrauterine growth retardation) and a low birth
    weight. Affected individuals may have heart defects and abnormalities of other
    organs that develop before birth. Other features of trisomy 18 include a small,
    abnormally shaped head; a small jaw and mouth; and clenched fists with overlapping
    fingers. Due to the presence of several life-threatening medical problems, many
    individuals with trisomy 18 die before birth or within their first month. Five
    to 10 percent of children with this condition live past their first year, and
    these children often have severe intellectual disability.


    ## Frequency'
- source_sentence: hyperreflexia, infantile onset
  sentences:
  - 'Furuncular myiasis in humans is caused by two species: the Cayor worm (larvae
    of the African tumbu fly Cordylobia anthropophaga) and the larvae of the human
    botfly (Dermatobia hominis).


    ## Epidemiology


    The prevalence is unknown but the cases reported in Europe occur following visits
    to affected regions (Latin America, Sub-Saharan Africa) or in association with
    animal importation.


    ## Clinical description


    In the case of Cordylobia anthropophaga, the females lay their eggs on damp fabric
    or on the ground. The larvae penetrate the skin following contact with the ground
    or with non-ironed contaminated fabric. Infection becomes evident within 10 to
    15 days with the formation of a pseudo-furuncle or emergence of a maggot. Dermatobia
    hominis is found in Latin America. Infestation is usually localised to the scalp
    of infected individuals.'
  - A rare ARX-related epileptic encephalopathy characterized by infantile onset of
    myoclonic epilepsy with generalized spasticity, severe global developmental delay,
    and moderate to profound intellectual disability. Obligate female carriers show
    subtle, generalized hyperreflexia. Late onset progressive spastic ataxia has also
    been reported.
  - Intestinal lymphangiectasia is a rare digestive disorder characterized by abnormally
    enlarged lymph vessels supplying the lining of the small intestine. Affected people
    may experience intermittent diarrhea, nausea, vomiting, swelling of the limbs
    and abdominal discomfort. Intestinal lymphangiectasia can be congenital (also
    called primary intestinal lymphangiectasia or Waldmann disease) in which case
    it affects children and young adults (mean age of onset, 11 years); it can also
    be associated with a variety of other conditions and affect older adults. Treatment
    generally involves control of symptoms with dietary and/or behavioral modifications
    and the use of certain medications.
- source_sentence: mutations in CYLD gene, chromosome 16q12-q13
  sentences:
  - '##  Description


    Multiple familial trichoepithelioma (MFT) is an autosomal dominant disorder of
    skin appendage tumors characterized by the appearance of trichoepitheliomas.


    See also MFT1 (601606), which is caused by mutations in the CYLD gene (605018)
    on chromosome 16q12-q13.


    Mapping


    In 3 families with multiple familial trichoepithelioma, 2 African American and
    1 Caucasian, Harada et al. (1996) found linkage of the disorder to a 4-cM region
    between IFNA (147660) and D9S126 on chromosome 9p21; maximum combined lod = 3.31
    at D9S171 at theta = 0.0.'
  - This article has multiple issues. Please help improve it or discuss these issues
    on the talk page. (Learn how and when to remove these template messages)
  - 'Male congenital condition


    Buried penis on a circumcised 30 year old male not due to obesity


    Buried penis in a circumcised 40 year old male due to obesity


    Buried penis (also known as hidden penis or retractile penis) is a congenital
    or acquired condition, in which the penis is partially or completely hidden below
    the surface of the skin. It was first described by Edward Lawrence Keyes in 1919
    as the apparent absence of the penis and as being buried beneath the skin of the
    abdomen, thigh, or scrotum.[1] Further research was done by Maurice Campbell in
    1951 when he reported on the penis being buried beneath subcutaneous fat of the
    scrotum, perineum, hypogastrium, and thigh.[2]


    A buried penis can lead to obstruction of urinary stream, poor hygiene, soft tissue
    infection, phimosis, and inhibition of normal sexual function.'
- source_sentence: metastasis, lung pain, liver symptoms
  sentences:
  - 'Testicular seminomatous germ cell tumor is a rare testicular germ cell tumor
    (see this term), most commonly presenting with a painless mass in the scrotum,
    with a very high cure rate if caught in the early stages.


    ## Epidemiology


    Annual incidence in Europe is 1/62,000 people. It accounts for 40% of testicular
    cancer cases.


    ## Clinical description


    Seminoma usually presents in males between the ages of 30-40. A painless mass
    in the scrotum is indicative of disease. A long-standing hydrocele may be noted
    causing a feeling of heaviness in the testicle. Gynecomastia and back and flank
    pain are symptoms that are seen in some patients. Relapse after surgery can occur,
    usually (in 97% of cases) in the high iliac or retroperitoneal lymph nodes. Metastasis,
    although rare, can occur in some cases, affecting the lungs, liver, bones and
    central nervous system.


    ## Etiology'
  - 'Proteus-like syndrome describes patients who do not meet the diagnostic criteria
    for Proteus syndrome (see this term) but who share a multitude of characteristic
    clinical features of the disease.


    ## Epidemiology


    The prevalence is unknown.


    ## Clinical description


    Proteus-like syndrome has the clinical features of Proteus syndrome but lacks
    some of the required criteria necessary for diagnosis. The main clinical features
    include skeletal overgrowth, hamartomous overgrowth of multiple tissues, cerebriform
    connective tissue nevi, vascular malformations and linear epidermal nevi.


    ## Etiology'
  - "\"ESUS\" redirects here. For other uses, see ESUS (disambiguation).\n\nEmbolic\
    \ stroke of undetermined source (ESUS) is a type of ischemic stroke with an unknown\
    \ origin, defined as a non-lacunar brain infarct without proximal arterial stenosis\
    \ or cardioembolic sources.[1] As such, it forms a subset of cryptogenic stroke,\
    \ which is part of the TOAST-classification.[2] The following diagnostic criteria\
    \ define an ESUS:[1]\n\n  * Stroke detected by CT or MRI that is not lacunar\n\
    \  * No major-risk cardioembolic source of embolism\n  * Absence of extracranial\
    \ or intracranial atherosclerosis causing 50% luminal stenosis in arteries supplying\
    \ the area of ischaemia\n  * No other specific cause of stroke identified (e.g.,\
    \ arteritis, dissection, migraine/vasospasm, drug misuse)\n\n## Contents\n\n \
    \ * 1 Causes\n  * 2 Diagnosis\n    * 2.1 Cryptogenic stroke vs ESUS\n  * 3 Management\n\
    \  * 4 Epidemiology\n  * 5 References\n  * 6 Further reading\n\n## Causes[edit]"
- source_sentence: nerve cell dysfunction, riboflavin deficiency
  sentences:
  - Riboflavin transporter deficiency neuronopathy is a disorder that affects nerve
    cells (neurons). Affected individuals typically have hearing loss caused by nerve
    damage in the inner ear (sensorineural hearing loss) and signs of damage to other
    nerves.
  - 'A number sign (#) is used with this entry because autosomal recessive deafness-23
    (DFNB23) is caused by homozygous mutation in the gene encoding protocadherin-15
    (PCDH15; 605514) on chromosome 10q21.


    Mutation in the PCDH15 gene can also cause Usher syndrome type IF (602083).


    Clinical Features


    Ahmed et al. (2003) reported 3 families with isolated deafness. Two of the families
    had no history of nyctalopia, and the funduscopy and electroretinograms were normal
    in 2 older affected individuals from each family (age range, 13-44 years). Vestibular
    responses were intact in affected individuals.'
  - 'A number sign (#) is used with this entry because hyperprolinemia type I (HYRPRO1)
    is caused by homozygous or compound heterozygous mutation in the proline dehydrogenase
    gene (PRODH; 606810) on chromosome 22q11.


    The PRODH gene falls within the region deleted in the 22q11 deletion syndrome,
    including DiGeorge syndrome (188400) and velocardiofacial syndrome (192430).


    Description


    Phang et al. (2001) noted that prospective studies of HPI probands identified
    through newborn screening as well as reports of several families have suggested
    that it is a metabolic disorder not clearly associated with clinical manifestations.
    Phang et al. (2001) concluded that HPI is a relatively benign condition in most
    individuals under most circumstances. However, other reports have suggested that
    some patients have a severe phenotype with neurologic manifestations, including
    epilepsy and mental retardation (Jacquet et al., 2003).


    ### Genetic Heterogeneity of Hyperprolinemia'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.1933234251743455
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5625928889905111
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7512289927975306
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8409740482451126
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1933234251743455
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.187530962996837
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15024579855950612
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08409740482451128
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1933234251743455
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5625928889905111
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7512289927975306
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8409740482451126
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5119882960837339
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.405861873730865
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4109594895459784
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.1949239739339202
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5672802103578369
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7570595632788385
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8415456728021036
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.1949239739339202
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.18909340345261233
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.1514119126557677
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08415456728021035
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.1949239739339202
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.5672802103578369
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.7570595632788385
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8415456728021036
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5141471619143755
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.40838527858078216
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4135618156873651
      name: Dot Map@100
---

# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1) <!-- at revision 3af7c6da5b3e1bea796ef6c97fe237538cbe6e7f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'nerve cell dysfunction, riboflavin deficiency',
    'Riboflavin transporter deficiency neuronopathy is a disorder that affects nerve cells (neurons). Affected individuals typically have hearing loss caused by nerve damage in the inner ear (sensorineural hearing loss) and signs of damage to other nerves.',
    'A number sign (#) is used with this entry because hyperprolinemia type I (HYRPRO1) is caused by homozygous or compound heterozygous mutation in the proline dehydrogenase gene (PRODH; 606810) on chromosome 22q11.\n\nThe PRODH gene falls within the region deleted in the 22q11 deletion syndrome, including DiGeorge syndrome (188400) and velocardiofacial syndrome (192430).\n\nDescription\n\nPhang et al. (2001) noted that prospective studies of HPI probands identified through newborn screening as well as reports of several families have suggested that it is a metabolic disorder not clearly associated with clinical manifestations. Phang et al. (2001) concluded that HPI is a relatively benign condition in most individuals under most circumstances. However, other reports have suggested that some patients have a severe phenotype with neurologic manifestations, including epilepsy and mental retardation (Jacquet et al., 2003).\n\n### Genetic Heterogeneity of Hyperprolinemia',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1933     |
| cosine_accuracy@3   | 0.5626     |
| cosine_accuracy@5   | 0.7512     |
| cosine_accuracy@10  | 0.841      |
| cosine_precision@1  | 0.1933     |
| cosine_precision@3  | 0.1875     |
| cosine_precision@5  | 0.1502     |
| cosine_precision@10 | 0.0841     |
| cosine_recall@1     | 0.1933     |
| cosine_recall@3     | 0.5626     |
| cosine_recall@5     | 0.7512     |
| cosine_recall@10    | 0.841      |
| cosine_ndcg@10      | 0.512      |
| cosine_mrr@10       | 0.4059     |
| cosine_map@100      | 0.411      |
| dot_accuracy@1      | 0.1949     |
| dot_accuracy@3      | 0.5673     |
| dot_accuracy@5      | 0.7571     |
| dot_accuracy@10     | 0.8415     |
| dot_precision@1     | 0.1949     |
| dot_precision@3     | 0.1891     |
| dot_precision@5     | 0.1514     |
| dot_precision@10    | 0.0842     |
| dot_recall@1        | 0.1949     |
| dot_recall@3        | 0.5673     |
| dot_recall@5        | 0.7571     |
| dot_recall@10       | 0.8415     |
| dot_ndcg@10         | 0.5141     |
| dot_mrr@10          | 0.4084     |
| **dot_map@100**     | **0.4136** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 95,159 training samples
* Columns: <code>queries</code> and <code>chunks</code>
* Approximate statistics based on the first 1000 samples:
  |         | queries                                                                           | chunks                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 5 tokens</li><li>mean: 15.01 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 158.91 tokens</li><li>max: 319 tokens</li></ul> |
* Samples:
  | queries                                                                  | chunks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  |:-------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>hypotrichosis, wiry hair, onycholysis</code>                       | <code>Green et al. (2003) reported an Australian family in which 22 members over 4 generations had progressive patterned scalp hypotrichosis and wiry hair similar to that seen in Marie Unna hereditary hypotrichosis (MUHH; 146550). Features differing from those of MUHH included absence of signs of abnormality at birth, relative sparing of body hair, distal onycholysis, and intermittent cosegregation with autosomal dominant cleft lip and palate. Five individuals had associated cleft lip and palate. Green et al. (2003) excluded linkage of the disorder in the Australian family to the MUHH locus on chromosome 8p21.</code> |
  | <code>cleft lip, cleft palate, hair loss</code>                          | <code>Green et al. (2003) reported an Australian family in which 22 members over 4 generations had progressive patterned scalp hypotrichosis and wiry hair similar to that seen in Marie Unna hereditary hypotrichosis (MUHH; 146550). Features differing from those of MUHH included absence of signs of abnormality at birth, relative sparing of body hair, distal onycholysis, and intermittent cosegregation with autosomal dominant cleft lip and palate. Five individuals had associated cleft lip and palate. Green et al. (2003) excluded linkage of the disorder in the Australian family to the MUHH locus on chromosome 8p21.</code> |
  | <code>progressive patterned scalp, autosomal dominant inheritance</code> | <code>Green et al. (2003) reported an Australian family in which 22 members over 4 generations had progressive patterned scalp hypotrichosis and wiry hair similar to that seen in Marie Unna hereditary hypotrichosis (MUHH; 146550). Features differing from those of MUHH included absence of signs of abnormality at birth, relative sparing of body hair, distal onycholysis, and intermittent cosegregation with autosomal dominant cleft lip and palate. Five individuals had associated cleft lip and palate. Green et al. (2003) excluded linkage of the disorder in the Australian family to the MUHH locus on chromosome 8p21.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 1,
      "similarity_fct": "dot_score"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 8,747 evaluation samples
* Columns: <code>queries</code> and <code>chunks</code>
* Approximate statistics based on the first 1000 samples:
  |         | queries                                                                           | chunks                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 6 tokens</li><li>mean: 14.71 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 155.81 tokens</li><li>max: 305 tokens</li></ul> |
* Samples:
  | queries                                                                                              | chunks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  |:-----------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>white patches, corrugated tongue, immunocompromised, Epstein-Barr virus</code>                 | <code>Not to be confused with Hairy tongue.<br><br>Hairy leukoplakia  <br>Other namesOral hairy leukoplakia,[1]:385 OHL, or HIV-associated hairy leukoplakia[2]  <br>SpecialtyGastroenterology  <br>  <br>Hairy leukoplakia is a white patch on the side of the tongue with a corrugated or hairy appearance. It is caused by Epstein-Barr virus (EBV) and occurs usually in persons who are immunocompromised, especially those with human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS). The white lesion, which cannot be scraped off, is benign and does not require any treatment, although its appearance may have diagnostic and prognostic implications for the underlying condition.<br><br>Depending upon what definition of leukoplakia is used, hairy leukoplakia is sometimes considered a subtype of leukoplakia, or a distinct diagnosis.<br><br>## Contents</code> |
  | <code>HIV-associated lesions, oral hairy leukoplakia, benign white lesions, tongue appearance</code> | <code>Not to be confused with Hairy tongue.<br><br>Hairy leukoplakia  <br>Other namesOral hairy leukoplakia,[1]:385 OHL, or HIV-associated hairy leukoplakia[2]  <br>SpecialtyGastroenterology  <br>  <br>Hairy leukoplakia is a white patch on the side of the tongue with a corrugated or hairy appearance. It is caused by Epstein-Barr virus (EBV) and occurs usually in persons who are immunocompromised, especially those with human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS). The white lesion, which cannot be scraped off, is benign and does not require any treatment, although its appearance may have diagnostic and prognostic implications for the underlying condition.<br><br>Depending upon what definition of leukoplakia is used, hairy leukoplakia is sometimes considered a subtype of leukoplakia, or a distinct diagnosis.<br><br>## Contents</code> |
  | <code>hairy leukoplakia symptoms, non-scrapable lesions, HIV/AIDS, oral lesions</code>               | <code>Not to be confused with Hairy tongue.<br><br>Hairy leukoplakia  <br>Other namesOral hairy leukoplakia,[1]:385 OHL, or HIV-associated hairy leukoplakia[2]  <br>SpecialtyGastroenterology  <br>  <br>Hairy leukoplakia is a white patch on the side of the tongue with a corrugated or hairy appearance. It is caused by Epstein-Barr virus (EBV) and occurs usually in persons who are immunocompromised, especially those with human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS). The white lesion, which cannot be scraped off, is benign and does not require any treatment, although its appearance may have diagnostic and prognostic implications for the underlying condition.<br><br>Depending upon what definition of leukoplakia is used, hairy leukoplakia is sometimes considered a subtype of leukoplakia, or a distinct diagnosis.<br><br>## Contents</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 1,
      "similarity_fct": "dot_score"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 15
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 15
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch       | Step     | Training Loss | loss       | dot_map@100 |
|:-----------:|:--------:|:-------------:|:----------:|:-----------:|
| 0           | 0        | -             | 1.4355     | 0.2271      |
| 0.1346      | 100      | 1.2599        | -          | -           |
| 0.2692      | 200      | 0.7627        | -          | -           |
| 0.4038      | 300      | 0.6061        | -          | -           |
| 0.5384      | 400      | 0.5632        | -          | -           |
| 0.6729      | 500      | 0.3965        | 0.4589     | 0.3852      |
| 0.8075      | 600      | 0.3104        | -          | -           |
| 0.9421      | 700      | 0.446         | -          | -           |
| 1.0767      | 800      | 0.4426        | -          | -           |
| 1.2113      | 900      | 0.4518        | -          | -           |
| 1.3459      | 1000     | 0.4145        | 0.3726     | 0.3964      |
| 1.4805      | 1100     | 0.4296        | -          | -           |
| 1.6151      | 1200     | 0.4144        | -          | -           |
| 1.7497      | 1300     | 0.1536        | -          | -           |
| 1.8843      | 1400     | 0.3425        | -          | -           |
| 2.0188      | 1500     | 0.3225        | 0.3433     | 0.3930      |
| 2.1534      | 1600     | 0.3529        | -          | -           |
| 2.2880      | 1700     | 0.3382        | -          | -           |
| 2.4226      | 1800     | 0.3092        | -          | -           |
| 2.5572      | 1900     | 0.339         | -          | -           |
| 2.6918      | 2000     | 0.1681        | 0.3633     | 0.4032      |
| 2.8264      | 2100     | 0.1753        | -          | -           |
| 2.9610      | 2200     | 0.2552        | -          | -           |
| 3.0956      | 2300     | 0.2549        | -          | -           |
| 3.2301      | 2400     | 0.2759        | -          | -           |
| 3.3647      | 2500     | 0.2513        | 0.3338     | 0.4066      |
| 3.4993      | 2600     | 0.258         | -          | -           |
| 3.6339      | 2700     | 0.2222        | -          | -           |
| 3.7685      | 2800     | 0.0541        | -          | -           |
| 3.9031      | 2900     | 0.2275        | -          | -           |
| 4.0377      | 3000     | 0.1919        | 0.3529     | 0.4026      |
| 4.1723      | 3100     | 0.215         | -          | -           |
| 4.3069      | 3200     | 0.2114        | -          | -           |
| 4.4415      | 3300     | 0.2153        | -          | -           |
| 4.5760      | 3400     | 0.2164        | -          | -           |
| 4.7106      | 3500     | 0.0773        | 0.3509     | 0.4090      |
| 4.8452      | 3600     | 0.1211        | -          | -           |
| 4.9798      | 3700     | 0.1553        | -          | -           |
| 5.1144      | 3800     | 0.1764        | -          | -           |
| 5.2490      | 3900     | 0.1953        | -          | -           |
| 5.3836      | 4000     | 0.1559        | 0.3474     | 0.4089      |
| 5.5182      | 4100     | 0.1686        | -          | -           |
| 5.6528      | 4200     | 0.1327        | -          | -           |
| 5.7873      | 4300     | 0.0514        | -          | -           |
| 5.9219      | 4400     | 0.1381        | -          | -           |
| 6.0565      | 4500     | 0.1445        | 0.3521     | 0.4056      |
| 6.1911      | 4600     | 0.1621        | -          | -           |
| 6.3257      | 4700     | 0.1365        | -          | -           |
| 6.4603      | 4800     | 0.1579        | -          | -           |
| 6.5949      | 4900     | 0.1547        | -          | -           |
| 6.7295      | 5000     | 0.0316        | 0.3895     | 0.4094      |
| 6.8641      | 5100     | 0.0958        | -          | -           |
| 6.9987      | 5200     | 0.1082        | -          | -           |
| 7.1332      | 5300     | 0.1379        | -          | -           |
| 7.2678      | 5400     | 0.1348        | -          | -           |
| 7.4024      | 5500     | 0.1322        | 0.3552     | 0.4100      |
| 7.5370      | 5600     | 0.1321        | -          | -           |
| 7.6716      | 5700     | 0.0763        | -          | -           |
| 7.8062      | 5800     | 0.0472        | -          | -           |
| 7.9408      | 5900     | 0.0989        | -          | -           |
| 8.0754      | 6000     | 0.1045        | 0.3631     | 0.3967      |
| 8.2100      | 6100     | 0.122         | -          | -           |
| 8.3445      | 6200     | 0.1057        | -          | -           |
| 8.4791      | 6300     | 0.1194        | -          | -           |
| 8.6137      | 6400     | 0.113         | -          | -           |
| 8.7483      | 6500     | 0.0126        | 0.3944     | 0.4116      |
| 8.8829      | 6600     | 0.089         | -          | -           |
| 9.0175      | 6700     | 0.0849        | -          | -           |
| 9.1521      | 6800     | 0.1052        | -          | -           |
| 9.2867      | 6900     | 0.111         | -          | -           |
| 9.4213      | 7000     | 0.1026        | 0.3665     | 0.4133      |
| 9.5559      | 7100     | 0.1165        | -          | -           |
| 9.6904      | 7200     | 0.0394        | -          | -           |
| 9.8250      | 7300     | 0.0443        | -          | -           |
| 9.9596      | 7400     | 0.0756        | -          | -           |
| 10.0942     | 7500     | 0.0806        | 0.3785     | 0.4090      |
| 10.2288     | 7600     | 0.103         | -          | -           |
| 10.3634     | 7700     | 0.0875        | -          | -           |
| 10.4980     | 7800     | 0.0959        | -          | -           |
| 10.6326     | 7900     | 0.0851        | -          | -           |
| **10.7672** | **8000** | **0.0073**    | **0.3902** | **0.4136**  |
| 10.9017     | 8100     | 0.079         | -          | -           |
| 11.0363     | 8200     | 0.0664        | -          | -           |
| 11.1709     | 8300     | 0.0766        | -          | -           |
| 11.3055     | 8400     | 0.084         | -          | -           |
| 11.4401     | 8500     | 0.0947        | 0.3733     | 0.4099      |
| 11.5747     | 8600     | 0.0906        | -          | -           |
| 11.7093     | 8700     | 0.0224        | -          | -           |
| 11.8439     | 8800     | 0.0424        | -          | -           |
| 11.9785     | 8900     | 0.0569        | -          | -           |
| 12.1131     | 9000     | 0.0697        | 0.3824     | 0.4071      |
| 12.2476     | 9100     | 0.095         | -          | -           |
| 12.3822     | 9200     | 0.0651        | -          | -           |
| 12.5168     | 9300     | 0.0756        | -          | -           |
| 12.6514     | 9400     | 0.065         | -          | -           |
| 12.7860     | 9500     | 0.0194        | 0.3876     | 0.4110      |
| 12.9206     | 9600     | 0.0595        | -          | -           |
| 13.0552     | 9700     | 0.0629        | -          | -           |
| 13.1898     | 9800     | 0.0808        | -          | -           |
| 13.3244     | 9900     | 0.0652        | -          | -           |
| 13.4590     | 10000    | 0.0802        | 0.3783     | 0.4091      |
| 13.5935     | 10100    | 0.0809        | -          | -           |
| 13.7281     | 10200    | 0.0111        | -          | -           |
| 13.8627     | 10300    | 0.0465        | -          | -           |
| 13.9973     | 10400    | 0.0504        | -          | -           |
| 14.1319     | 10500    | 0.068         | 0.3831     | 0.4071      |
| 14.2665     | 10600    | 0.0739        | -          | -           |
| 14.4011     | 10700    | 0.0734        | -          | -           |
| 14.5357     | 10800    | 0.0737        | -          | -           |
| 14.6703     | 10900    | 0.0379        | -          | -           |
| 14.8048     | 11000    | 0.0231        | 0.3841     | 0.4112      |
| 14.9394     | 11100    | 0.0493        | -          | -           |
| 15.0        | 11145    | -             | 0.3902     | 0.4136      |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.43.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->