File size: 59,182 Bytes
f60af79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:89218
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-mpnet-base-dot-v1
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: Pulmonary stenoses, brachytelephalangy, inner ear deafness
  sentences:
  - "This article needs more medical references for verification or relies too heavily\
    \ on primary sources. Please review the contents of the article and add the appropriate\
    \ references if you can. Unsourced or poorly sourced material may be challenged\
    \ and removed.  \nFind sources: \"Chondropathy\" – news · newspapers · books ·\
    \ scholar · JSTOR (October 2020)  \n  \nChondropathy  \nSpecialtyOrthopedics \
    \ \n  \nChondropathy refers to a disease of the cartilage. It is frequently divided\
    \ into 5 grades, with 0-2 defined as normal and 3-4 defined as diseased.\n\n##\
    \ Contents\n\n  * 1 Some common diseases affecting/involving the cartilage\n \
    \ * 2 Repairing articular cartilage damage\n  * 3 References\n  * 4 External links\n\
    \n## Some common diseases affecting/involving the cartilage[edit]"
  - 'A number sign (#) is used with this entry because of evidence that Keutel syndrome
    (KTLS) is caused by homozygous mutation in the gene encoding the human matrix
    Gla protein (MGP; 154870) on chromosome 12p12.


    Description


    Keutel syndrome is an autosomal recessive disorder characterized by multiple peripheral
    pulmonary stenoses, brachytelephalangy, inner ear deafness, and abnormal cartilage
    ossification or calcification (summary by Khosroshahi et al., 2014).


    Clinical Features'
  - '##  Description


    Primary or spontaneous detachment of the retina occurs due to underlying ocular
    disease and often involves the vitreous as well as the retina. The precipitating
    event is formation of a retinal tear or hole, which permits fluid to accumulate
    under the sensory layers of the retina and creates an intraretinal cleavage that
    destroys the neurosensory process of visual reception. Vitreoretinal degeneration
    and tear formation are painless phenomena, and in most cases, significant vitreoretinal
    pathology is found only after detachment of the retina starts to cause loss of
    vision or visual field. Without surgical intervention, retinal detachment will
    almost inevitably lead to total blindness (summary by McNiel and McPherson, 1971).


    Clinical Features'
- source_sentence: APS, catastrophic, diagnostic criteria, treatment options
  sentences:
  - 'A number sign (#) is used with this entry because of evidence that myofibrillar
    myopathy-8 (MFM8) is caused by homozygous or compound heterozygous mutation in
    the PYROXD1 gene (617220) on chromosome 12p12.


    Description


    Myofibrillar myopathy-8 is an autosomal recessive myopathy characterized by childhood
    onset of slowly progressive proximal muscle weakness and atrophy resulting in
    increased falls, gait problems, and difficulty running or climbing stairs. Upper
    and lower limbs are affected, and some individuals develop distal muscle weakness
    and atrophy. Ambulation is generally preserved, and patients do not have significant
    respiratory compromise. Muscle biopsy shows a mix of myopathic features, including
    myofibrillar inclusions and sarcomeric disorganization (summary by O''Grady et
    al., 2016).


    For a general phenotypic description and a discussion of genetic heterogeneity
    of myofibrillar myopathy, see MFM1 (601419).


    Clinical Features'
  - "Rectal tenesmus  \nSpecialtyGeneral surgery  \n  \nRectal tenesmus is a feeling\
    \ of incomplete defecation. It is the sensation of inability or difficulty to\
    \ empty the bowel at defecation, even if the bowel contents have already been\
    \ evacuated. Tenesmus indicates the feeling of a residue, and is not always correlated\
    \ with the actual presence of residual fecal matter in the rectum. It is frequently\
    \ painful and may be accompanied by involuntary straining and other gastrointestinal\
    \ symptoms. Tenesmus has both a nociceptive and a neuropathic component.\n\nVesical\
    \ tenesmus is a similar condition, experienced as a feeling of incomplete voiding\
    \ despite the bladder being empty.\n\nOften, rectal tenesmus is simply called\
    \ tenesmus. The term rectal tenesmus is a retronym to distinguish defecation-related\
    \ tenesmus from vesical tenesmus.[1]"
  - "This article needs additional citations for verification. Please help improve\
    \ this article by adding citations to reliable sources. Unsourced material may\
    \ be challenged and removed.  \nFind sources: \"Catastrophic antiphospholipid\
    \ syndrome\" – news · newspapers · books · scholar · JSTOR (February 2018) (Learn\
    \ how and when to remove this template message)  \n  \nCatastrophic antiphospholipid\
    \ syndrome  \nOther namesCatastrophic APS"
- source_sentence: Excess cholesterol, foam cells, gallbladder wall changes
  sentences:
  - "Cholesterolosis of gallbladder  \nMicrograph of cholesterolosis of the gallbladder,\
    \ with an annotated foam cell. H&E stain.  \nSpecialtyGastroenterology  \n  \n\
    In surgical pathology, strawberry gallbladder, more formally cholesterolosis of\
    \ the gallbladder and gallbladder cholesterolosis, is a change in the gallbladder\
    \ wall due to excess cholesterol.[1]\n\nThe name strawberry gallbladder comes\
    \ from the typically stippled appearance of the mucosal surface on gross examination,\
    \ which resembles a strawberry. Cholesterolosis results from abnormal deposits\
    \ of cholesterol esters in macrophages within the lamina propria (foam cells)\
    \ and in mucosal epithelium. The gallbladder may be affected in a patchy localized\
    \ form or in a diffuse form. The diffuse form macroscopically appears as a bright\
    \ red mucosa with yellow mottling (due to lipid), hence the term strawberry gallbladder.\
    \ It is not tied to cholelithiasis (gallstones) or cholecystitis (inflammation\
    \ of the gallbladder).[2]\n\n## Contents"
  - Meningococcal meningitis is an acute bacterial disease caused by Neisseria meningitides
    that presents usually, but not always, with a rash (non blanching petechial or
    purpuric rash), progressively developing signs of meningitis (fever, vomiting,
    headache, photophobia, and neck stiffness) and later leading to confusion, delirium
    and drowsiness. Neck stiffness and photophobia are often absent in infants and
    young children who may manifest nonspecific signs such as irritability, inconsolable
    crying, poor feeding, and a bulging fontanel. Meningococcal meningitis may also
    present as part of early or late onset sepsis in neonates. The disease is potentially
    fatal. Surviving patients may develop neurological sequelae that include sensorineural
    hearing loss, seizures, spasticity, attention deficits and intellectual disability.
  - "Retiform parapsoriasis  \nSpecialtyDermatology  \n  \nRetiform parapsoriasis\
    \ is a cutaneous condition, considered to be a type of large-plaque parapsoriasis.[1]\
    \ It is characterized by widespread, ill-defined plaques on the skin, that have\
    \ a net-like or zebra-striped pattern.[2] Skin atrophy, a wasting away of the\
    \ cutaneous tissue, usually occurs within the area of these plaques.[1]\n\n##\
    \ See also[edit]\n\n  * Parapsoriasis\n  * Poikiloderma vasculare atrophicans\n\
    \  * List of cutaneous conditions\n\n## References[edit]\n\n  1. ^ a b Lambert\
    \ WC, Everett MA (Oct 1981). \"The nosology of parapsoriasis\". J. Am. Acad. Dermatol.\
    \ 5 (4): 373–95. doi:10.1016/S0190-9622(81)70100-2. PMID 7026622.\n  2. ^ Rapini,\
    \ Ronald P.; Bolognia, Jean L.; Jorizzo, Joseph L. (2007). Dermatology: 2-Volume\
    \ Set. St. Louis: Mosby. ISBN 1-4160-2999-0.\n\n## External links[edit]\n\nClassification\n\
    \nD\n\n  * ICD-10: L41.5\n  * ICD-9-CM: 696.2\n\n  \n  \n  * v\n  * t\n  * e\n\
    \nPapulosquamous disorders  \n  \nPsoriasis\n\nPustular"
- source_sentence: Pulmonary hypoplasia, respiratory insufficiency, megaureter, hydronephrosis
  sentences:
  - 'A rare fetal lower urinary tract obstruction (LUTO) characterized by closure
    or failure to develop an opening in the urethra and resulting in obstructive uropathy
    presenting in utero as megacystis, oligohydramnios or anhydramnios, and potter
    sequence.


    ## Epidemiology


    Prevalence is unknown, but is higher in males than females.


    ## Clinical description


    Atresia of urethra often presents on routine antenatal ultrasound with megacystis,
    oligohydramnios or anhydramnios and sometimes urinary ascites. It may cause fetal
    death. In cases that survive to birth, additional symptoms include respiratory
    insufficiency due to pulmonary hypoplasia, megaureter, hydronephrosis and enlarged
    often cystic and functionally impaired/non-functional dysplastic kidneys as well
    as abdominal distention. Furthermore, a Potter sequence can be found due to oligo-
    or anhydramnios. Patients may present with patent urachus or vesicocutaneous fistula.


    ## Etiology'
  - X-linked distal spinal muscular atrophy type 3 is a rare distal hereditary motor
    neuropathy characterized by slowly progressive atrophy and weakness of distal
    muscles of hands and feet with normal deep tendon reflexes or absent ankle reflexes
    and minimal or no sensory loss, sometimes mild proximal weakness in the legs and
    feet and hand deformities in males.
  - 'A number sign (#) is used with this entry because Chudley-McCullough syndrome
    (CMCS) is caused by homozygous or compound heterozygous mutation in the GPSM2
    gene (609245) on chromosome 1p13.


    Description


    Chudley-McCullough syndrome is an autosomal recessive neurologic disorder characterized
    by early-onset sensorineural deafness and specific brain anomalies on MRI, including
    hypoplasia of the corpus callosum, enlarged cysterna magna with mild focal cerebellar
    dysplasia, and nodular heterotopia. Some patients have hydrocephalus. Psychomotor
    development is normal (summary by Alrashdi et al., 2011).


    Clinical Features'
- source_sentence: Thyroid-stimulating hormone receptor gene, chromosome 14q31, homozygous
    mutation
  sentences:
  - 'A number sign (#) is used with this entry because dermatofibrosarcoma protuberans
    is caused in most cases by a specific fusion of the COL1A1 gene (120150) with
    the PDGFB gene (190040); see 190040.0002.


    Description


    Dermatofibrosarcoma protuberans (DFSP) is an uncommon, locally aggressive, but
    rarely metastasizing tumor of the deep dermis and subcutaneous tissue. It typically
    presents during early or middle adult life and is most frequently located on the
    trunk and proximal extremities (Sandberg et al., 2003).


    Clinical Features


    DFSP was first described by Taylor (1890). Sirvent et al. (2003) stated that,
    because DFSP is relatively rare, grows slowly, and has a low level of aggressiveness,
    its clinical significance has been underestimated. In particular, they noted that
    the existence of pediatric cases has been overlooked.


    Gardner et al. (1998) described a father and son with dermatofibrosarcoma protuberans.
    The tumors arose at ages 43 and 14 years, respectively.'
  - "Visuospatial dysgnosia is a loss of the sense of \"whereness\" in the relation\
    \ of oneself to one's environment and in the relation of objects to each other.[1]\
    \ Visuospatial dysgnosia is often linked with topographical disorientation.\n\n\
    ## Contents\n\n  * 1 Symptoms\n  * 2 Lesion areas\n  * 3 Case studies\n  * 4 Therapies\n\
    \  * 5 References\n\n## Symptoms[edit]\n\nThe syndrome rarely presents itself\
    \ the same way in every patient. Some symptoms that occur may be:"
  - 'A number sign (#) is used with this entry because of evidence that congenital
    nongoitrous hypothyroidism-1 (CHNG1) is caused by homozygous or compound heterozygous
    mutation in the gene encoding the thyroid-stimulating hormone receptor (TSHR;
    603372) on chromosome 14q31.


    Description


    Resistance to thyroid-stimulating hormone (TSH; see 188540), a hallmark of congenital
    nongoitrous hypothyroidism, causes increased levels of plasma TSH and low levels
    of thyroid hormone. Only a subset of patients develop frank hypothyroidism; the
    remainder are euthyroid and asymptomatic (so-called compensated hypothyroidism)
    and are usually detected by neonatal screening programs (Paschke and Ludgate,
    1997).


    ### Genetic Heterogeneity of Congenital Nongoitrous Hypothyroidism'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.1900990099009901
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5756875687568757
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7932893289328933
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8704070407040704
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1900990099009901
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19189585625229189
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15865786578657867
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08704070407040705
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1900990099009901
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5756875687568757
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7932893289328933
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8704070407040704
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.526584144074431
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.41522683220700946
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4194005014371134
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.188998899889989
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5761826182618262
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7954895489548955
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8710671067106711
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.188998899889989
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.19206087275394204
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.15909790979097907
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08710671067106711
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.188998899889989
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.5761826182618262
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.7954895489548955
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8710671067106711
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5265923432373186
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4149802896956161
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.41904239679820193
      name: Dot Map@100
---

# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1) <!-- at revision 3af7c6da5b3e1bea796ef6c97fe237538cbe6e7f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Thyroid-stimulating hormone receptor gene, chromosome 14q31, homozygous mutation',
    'A number sign (#) is used with this entry because of evidence that congenital nongoitrous hypothyroidism-1 (CHNG1) is caused by homozygous or compound heterozygous mutation in the gene encoding the thyroid-stimulating hormone receptor (TSHR; 603372) on chromosome 14q31.\n\nDescription\n\nResistance to thyroid-stimulating hormone (TSH; see 188540), a hallmark of congenital nongoitrous hypothyroidism, causes increased levels of plasma TSH and low levels of thyroid hormone. Only a subset of patients develop frank hypothyroidism; the remainder are euthyroid and asymptomatic (so-called compensated hypothyroidism) and are usually detected by neonatal screening programs (Paschke and Ludgate, 1997).\n\n### Genetic Heterogeneity of Congenital Nongoitrous Hypothyroidism',
    'Visuospatial dysgnosia is a loss of the sense of "whereness" in the relation of oneself to one\'s environment and in the relation of objects to each other.[1] Visuospatial dysgnosia is often linked with topographical disorientation.\n\n## Contents\n\n  * 1 Symptoms\n  * 2 Lesion areas\n  * 3 Case studies\n  * 4 Therapies\n  * 5 References\n\n## Symptoms[edit]\n\nThe syndrome rarely presents itself the same way in every patient. Some symptoms that occur may be:',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.1901    |
| cosine_accuracy@3   | 0.5757    |
| cosine_accuracy@5   | 0.7933    |
| cosine_accuracy@10  | 0.8704    |
| cosine_precision@1  | 0.1901    |
| cosine_precision@3  | 0.1919    |
| cosine_precision@5  | 0.1587    |
| cosine_precision@10 | 0.087     |
| cosine_recall@1     | 0.1901    |
| cosine_recall@3     | 0.5757    |
| cosine_recall@5     | 0.7933    |
| cosine_recall@10    | 0.8704    |
| cosine_ndcg@10      | 0.5266    |
| cosine_mrr@10       | 0.4152    |
| cosine_map@100      | 0.4194    |
| dot_accuracy@1      | 0.189     |
| dot_accuracy@3      | 0.5762    |
| dot_accuracy@5      | 0.7955    |
| dot_accuracy@10     | 0.8711    |
| dot_precision@1     | 0.189     |
| dot_precision@3     | 0.1921    |
| dot_precision@5     | 0.1591    |
| dot_precision@10    | 0.0871    |
| dot_recall@1        | 0.189     |
| dot_recall@3        | 0.5762    |
| dot_recall@5        | 0.7955    |
| dot_recall@10       | 0.8711    |
| dot_ndcg@10         | 0.5266    |
| dot_mrr@10          | 0.415     |
| **dot_map@100**     | **0.419** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 89,218 training samples
* Columns: <code>queries</code> and <code>chunks</code>
* Approximate statistics based on the first 1000 samples:
  |         | queries                                                                           | chunks                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 7 tokens</li><li>mean: 18.07 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 161.59 tokens</li><li>max: 299 tokens</li></ul> |
* Samples:
  | queries                                                             | chunks                                                                                                                                                                                                                                                     |
  |:--------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Polyhydramnios, megalencephaly, symptomatic epilepsy</code>   | <code>A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.<br><br>Clinical Features</code> |
  | <code>Polyhydramnios, megalencephaly, STRADA gene mutation</code>   | <code>A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.<br><br>Clinical Features</code> |
  | <code>Megalencephaly, symptomatic epilepsy, chromosome 17q23</code> | <code>A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.<br><br>Clinical Features</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 1,
      "similarity_fct": "dot_score"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 18,180 evaluation samples
* Columns: <code>queries</code> and <code>chunks</code>
* Approximate statistics based on the first 1000 samples:
  |         | queries                                                                           | chunks                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 6 tokens</li><li>mean: 18.35 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 152.55 tokens</li><li>max: 312 tokens</li></ul> |
* Samples:
  | queries                                                                            | chunks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Weight loss, anorexia, fatigue, epigastric pain and discomfort</code>        | <code>Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.</code> |
  | <code>Heartburn, nausea, vomiting, hematemesis</code>                              | <code>Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.</code> |
  | <code>Ascites, jaundice, intestinal obstruction, peripheral lymphadenopathy</code> | <code>Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 1,
      "similarity_fct": "dot_score"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 50
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 50
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch       | Step     | Training Loss | loss       | dot_map@100 |
|:-----------:|:--------:|:-------------:|:----------:|:-----------:|
| 0           | 0        | -             | 1.1605     | 0.2419      |
| 0.1435      | 100      | 1.2016        | -          | -           |
| 0.2869      | 200      | 0.7627        | -          | -           |
| 0.4304      | 300      | 0.5559        | -          | -           |
| 0.5739      | 400      | 0.4541        | -          | -           |
| 0.7174      | 500      | 0.1451        | 0.3600     | 0.3913      |
| 0.8608      | 600      | 0.3841        | -          | -           |
| 1.0057      | 700      | 0.3334        | -          | -           |
| 1.1492      | 800      | 0.3898        | -          | -           |
| 1.2927      | 900      | 0.3576        | -          | -           |
| 1.4362      | 1000     | 0.3563        | 0.2719     | 0.4127      |
| 1.5796      | 1100     | 0.3186        | -          | -           |
| 1.7231      | 1200     | 0.098         | -          | -           |
| 1.8666      | 1300     | 0.3038        | -          | -           |
| 2.0115      | 1400     | 0.2629        | -          | -           |
| 2.1549      | 1500     | 0.3221        | 0.2579     | 0.4155      |
| 2.2984      | 1600     | 0.2936        | -          | -           |
| 2.4419      | 1700     | 0.2867        | -          | -           |
| 2.5854      | 1800     | 0.2614        | -          | -           |
| 2.7288      | 1900     | 0.0716        | -          | -           |
| 2.8723      | 2000     | 0.2655        | 0.2546     | 0.4152      |
| 3.0172      | 2100     | 0.2187        | -          | -           |
| 3.1607      | 2200     | 0.2623        | -          | -           |
| 3.3042      | 2300     | 0.2462        | -          | -           |
| 3.4476      | 2400     | 0.2363        | -          | -           |
| 3.5911      | 2500     | 0.213         | 0.2866     | 0.4227      |
| 3.7346      | 2600     | 0.0487        | -          | -           |
| 3.8780      | 2700     | 0.222         | -          | -           |
| 4.0230      | 2800     | 0.1851        | -          | -           |
| 4.1664      | 2900     | 0.224         | -          | -           |
| 4.3099      | 3000     | 0.2111        | 0.2562     | 0.4215      |
| 4.4534      | 3100     | 0.1984        | -          | -           |
| 4.5968      | 3200     | 0.1707        | -          | -           |
| 4.7403      | 3300     | 0.0331        | -          | -           |
| 4.8838      | 3400     | 0.1896        | -          | -           |
| 5.0287      | 3500     | 0.1548        | 0.2643     | 0.4151      |
| 5.1722      | 3600     | 0.19          | -          | -           |
| 5.3156      | 3700     | 0.1656        | -          | -           |
| 5.4591      | 3800     | 0.1626        | -          | -           |
| 5.6026      | 3900     | 0.1303        | -          | -           |
| 5.7461      | 4000     | 0.0264        | 0.2952     | 0.4186      |
| 5.8895      | 4100     | 0.1563        | -          | -           |
| 6.0344      | 4200     | 0.1286        | -          | -           |
| 6.1779      | 4300     | 0.1436        | -          | -           |
| 6.3214      | 4400     | 0.1352        | -          | -           |
| 6.4648      | 4500     | 0.1344        | 0.2668     | 0.4218      |
| 6.6083      | 4600     | 0.1069        | -          | -           |
| 6.7518      | 4700     | 0.0171        | -          | -           |
| 6.8953      | 4800     | 0.1246        | -          | -           |
| 7.0402      | 4900     | 0.1074        | -          | -           |
| 7.1836      | 5000     | 0.1192        | 0.2837     | 0.4166      |
| 7.3271      | 5100     | 0.1176        | -          | -           |
| 7.4706      | 5200     | 0.111         | -          | -           |
| 7.6141      | 5300     | 0.0889        | -          | -           |
| 7.7575      | 5400     | 0.0202        | -          | -           |
| 7.9010      | 5500     | 0.1059        | 0.2797     | 0.4166      |
| 8.0459      | 5600     | 0.0854        | -          | -           |
| 8.1894      | 5700     | 0.0989        | -          | -           |
| 8.3329      | 5800     | 0.0963        | -          | -           |
| 8.4763      | 5900     | 0.0967        | -          | -           |
| 8.6198      | 6000     | 0.0635        | 0.2974     | 0.4223      |
| 8.7633      | 6100     | 0.0215        | -          | -           |
| 8.9067      | 6200     | 0.0897        | -          | -           |
| 9.0516      | 6300     | 0.0693        | -          | -           |
| 9.1951      | 6400     | 0.0913        | -          | -           |
| 9.3386      | 6500     | 0.0883        | 0.2812     | 0.4171      |
| 9.4821      | 6600     | 0.0849        | -          | -           |
| 9.6255      | 6700     | 0.0525        | -          | -           |
| 9.7690      | 6800     | 0.0196        | -          | -           |
| 9.9125      | 6900     | 0.0799        | -          | -           |
| 10.0574     | 7000     | 0.0603        | 0.2899     | 0.4132      |
| 10.2009     | 7100     | 0.0816        | -          | -           |
| 10.3443     | 7200     | 0.0771        | -          | -           |
| 10.4878     | 7300     | 0.0746        | -          | -           |
| 10.6313     | 7400     | 0.0373        | -          | -           |
| **10.7747** | **7500** | **0.0181**    | **0.3148** | **0.419**   |
| 10.9182     | 7600     | 0.0702        | -          | -           |
| 11.0631     | 7700     | 0.0531        | -          | -           |
| 11.2066     | 7800     | 0.0671        | -          | -           |
| 11.3501     | 7900     | 0.0742        | -          | -           |
| 11.4935     | 8000     | 0.0728        | 0.2878     | 0.4177      |
| 11.6370     | 8100     | 0.0331        | -          | -           |
| 11.7805     | 8200     | 0.0206        | -          | -           |
| 11.9240     | 8300     | 0.0605        | -          | -           |
| 12.0689     | 8400     | 0.05          | -          | -           |
| 12.2123     | 8500     | 0.06          | 0.3169     | 0.4180      |
| 12.3558     | 8600     | 0.0613        | -          | -           |
| 12.4993     | 8700     | 0.0649        | -          | -           |
| 12.6428     | 8800     | 0.0257        | -          | -           |
| 12.7862     | 8900     | 0.0184        | -          | -           |
| 12.9297     | 9000     | 0.055         | 0.3107     | 0.4189      |
| 13.0746     | 9100     | 0.0417        | -          | -           |
| 13.2181     | 9200     | 0.0537        | -          | -           |
| 13.3615     | 9300     | 0.0558        | -          | -           |
| 13.5050     | 9400     | 0.0619        | -          | -           |
| 13.6485     | 9500     | 0.0217        | 0.3140     | 0.4173      |
| 13.7920     | 9600     | 0.0257        | -          | -           |
| 13.9354     | 9700     | 0.0398        | -          | -           |
| 14.0803     | 9800     | 0.041         | -          | -           |
| 14.2238     | 9900     | 0.0451        | -          | -           |
| 14.3673     | 10000    | 0.0485        | 0.3085     | 0.4188      |
| 14.5108     | 10100    | 0.0565        | -          | -           |
| 14.6542     | 10200    | 0.0159        | -          | -           |
| 14.7977     | 10300    | 0.0258        | -          | -           |
| 14.9412     | 10400    | 0.0364        | -          | -           |
| 15.0861     | 10500    | 0.0368        | 0.3144     | 0.4163      |
| 15.2296     | 10600    | 0.0447        | -          | -           |
| 15.3730     | 10700    | 0.0479        | -          | -           |
| 15.5165     | 10800    | 0.0535        | -          | -           |
| 15.6600     | 10900    | 0.0139        | -          | -           |
| 15.8034     | 11000    | 0.0257        | 0.3149     | 0.4151      |
| 15.9469     | 11100    | 0.0324        | -          | -           |
| 16.0918     | 11200    | 0.0374        | -          | -           |
| 16.2353     | 11300    | 0.0339        | -          | -           |
| 16.3788     | 11400    | 0.0423        | -          | -           |
| 16.5222     | 11500    | 0.0512        | 0.3209     | 0.4164      |
| 16.6657     | 11600    | 0.0121        | -          | -           |
| 16.8092     | 11700    | 0.0245        | -          | -           |
| 16.9527     | 11800    | 0.0323        | -          | -           |
| 17.0976     | 11900    | 0.0321        | -          | -           |
| 17.2410     | 12000    | 0.034         | 0.3211     | 0.4140      |
| 17.3845     | 12100    | 0.0387        | -          | -           |
| 17.5280     | 12200    | 0.0482        | -          | -           |
| 17.6714     | 12300    | 0.0096        | -          | -           |
| 17.8149     | 12400    | 0.0252        | -          | -           |
| 17.9584     | 12500    | 0.0299        | 0.3169     | 0.4170      |
| 18.1033     | 12600    | 0.0351        | -          | -           |
| 18.2468     | 12700    | 0.032         | -          | -           |
| 18.3902     | 12800    | 0.0348        | -          | -           |
| 18.5337     | 12900    | 0.0452        | -          | -           |
| 18.6772     | 13000    | 0.0076        | 0.3273     | 0.4158      |
| 18.8207     | 13100    | 0.0241        | -          | -           |
| 18.9641     | 13200    | 0.0277        | -          | -           |
| 19.1090     | 13300    | 0.0331        | -          | -           |
| 19.2525     | 13400    | 0.0264        | -          | -           |
| 19.3960     | 13500    | 0.0311        | 0.3272     | 0.4151      |
| 19.5395     | 13600    | 0.0437        | -          | -           |
| 19.6829     | 13700    | 0.0049        | -          | -           |
| 19.8264     | 13800    | 0.0263        | -          | -           |
| 19.9699     | 13900    | 0.0231        | -          | -           |
| 20.1148     | 14000    | 0.0303        | 0.3293     | 0.4200      |
| 20.2582     | 14100    | 0.0229        | -          | -           |
| 20.4017     | 14200    | 0.032         | -          | -           |
| 20.5452     | 14300    | 0.0395        | -          | -           |
| 20.6887     | 14400    | 0.0045        | -          | -           |
| 20.8321     | 14500    | 0.0244        | 0.3202     | 0.4144      |
| 20.9756     | 14600    | 0.0219        | -          | -           |
| 21.1205     | 14700    | 0.0291        | -          | -           |
| 21.2640     | 14800    | 0.0212        | -          | -           |
| 21.4075     | 14900    | 0.029         | -          | -           |
| 21.5509     | 15000    | 0.0357        | 0.3312     | 0.4147      |
| 21.6944     | 15100    | 0.0025        | -          | -           |
| 21.8379     | 15200    | 0.0252        | -          | -           |
| 21.9813     | 15300    | 0.0229        | -          | -           |
| 22.1263     | 15400    | 0.0261        | -          | -           |
| 22.2697     | 15500    | 0.0198        | 0.3392     | 0.4123      |
| 22.4132     | 15600    | 0.0259        | -          | -           |
| 22.5567     | 15700    | 0.0343        | -          | -           |
| 22.7001     | 15800    | 0.0022        | -          | -           |
| 22.8436     | 15900    | 0.0237        | -          | -           |
| 22.9871     | 16000    | 0.0199        | 0.3346     | 0.4146      |
| 23.1320     | 16100    | 0.0263        | -          | -           |
| 23.2755     | 16200    | 0.0173        | -          | -           |
| 23.4189     | 16300    | 0.0276        | -          | -           |
| 23.5624     | 16400    | 0.03          | -          | -           |
| 23.7059     | 16500    | 0.0022        | 0.3430     | 0.4195      |
| 23.8494     | 16600    | 0.0253        | -          | -           |
| 23.9928     | 16700    | 0.0182        | -          | -           |
| 24.1377     | 16800    | 0.0216        | -          | -           |
| 24.2812     | 16900    | 0.0194        | -          | -           |
| 24.4247     | 17000    | 0.0242        | 0.3335     | 0.4132      |
| 24.5681     | 17100    | 0.0289        | -          | -           |
| 24.7116     | 17200    | 0.0013        | -          | -           |
| 24.8551     | 17300    | 0.0253        | -          | -           |
| 24.9986     | 17400    | 0.0137        | -          | -           |
| 25.1435     | 17500    | 0.0219        | 0.3481     | 0.4118      |
| 25.2869     | 17600    | 0.017         | -          | -           |
| 25.4304     | 17700    | 0.0261        | -          | -           |
| 25.5739     | 17800    | 0.0298        | -          | -           |
| 25.7174     | 17900    | 0.0013        | -          | -           |
| 25.8608     | 18000    | 0.0257        | 0.3407     | 0.4160      |
| 26.0057     | 18100    | 0.014         | -          | -           |
| 26.1492     | 18200    | 0.0215        | -          | -           |
| 26.2927     | 18300    | 0.0161        | -          | -           |
| 26.4362     | 18400    | 0.0228        | -          | -           |
| 26.5796     | 18500    | 0.0246        | 0.3404     | 0.4131      |
| 26.7231     | 18600    | 0.0017        | -          | -           |
| 26.8666     | 18700    | 0.0244        | -          | -           |
| 27.0115     | 18800    | 0.0124        | -          | -           |
| 27.1549     | 18900    | 0.019         | -          | -           |
| 27.2984     | 19000    | 0.0151        | 0.3451     | 0.4139      |
| 27.4419     | 19100    | 0.0216        | -          | -           |
| 27.5854     | 19200    | 0.0255        | -          | -           |
| 27.7288     | 19300    | 0.0016        | -          | -           |
| 27.8723     | 19400    | 0.0251        | -          | -           |
| 28.0172     | 19500    | 0.0133        | 0.3416     | 0.4109      |
| 28.1607     | 19600    | 0.016         | -          | -           |
| 28.3042     | 19700    | 0.0186        | -          | -           |
| 28.4476     | 19800    | 0.0185        | -          | -           |
| 28.5911     | 19900    | 0.0225        | -          | -           |
| 28.7346     | 20000    | 0.0009        | 0.3463     | 0.4144      |
| 28.8780     | 20100    | 0.0249        | -          | -           |
| 29.0230     | 20200    | 0.0132        | -          | -           |
| 29.1664     | 20300    | 0.0145        | -          | -           |
| 29.3099     | 20400    | 0.0174        | -          | -           |
| 29.4534     | 20500    | 0.0172        | 0.3425     | 0.4092      |
| 29.5968     | 20600    | 0.0235        | -          | -           |
| 29.7403     | 20700    | 0.0009        | -          | -           |
| 29.8838     | 20800    | 0.0242        | -          | -           |
| 30.0287     | 20900    | 0.0128        | -          | -           |
| 30.1722     | 21000    | 0.0133        | 0.3482     | 0.4131      |
| 30.3156     | 21100    | 0.0158        | -          | -           |
| 30.4591     | 21200    | 0.0226        | -          | -           |
| 30.6026     | 21300    | 0.0188        | -          | -           |
| 30.7461     | 21400    | 0.0009        | -          | -           |
| 30.8895     | 21500    | 0.0249        | 0.3483     | 0.4132      |
| 31.0344     | 21600    | 0.0116        | -          | -           |
| 31.1779     | 21700    | 0.0117        | -          | -           |
| 31.3214     | 21800    | 0.0162        | -          | -           |
| 31.4648     | 21900    | 0.0184        | -          | -           |
| 31.6083     | 22000    | 0.0178        | 0.3390     | 0.4145      |
| 31.7518     | 22100    | 0.0012        | -          | -           |
| 31.8953     | 22200    | 0.0215        | -          | -           |
| 32.0402     | 22300    | 0.014         | -          | -           |
| 32.1836     | 22400    | 0.0105        | -          | -           |
| 32.3271     | 22500    | 0.0131        | 0.3556     | 0.4144      |
| 32.4706     | 22600    | 0.0199        | -          | -           |
| 32.6141     | 22700    | 0.0158        | -          | -           |
| 32.7575     | 22800    | 0.0018        | -          | -           |
| 32.9010     | 22900    | 0.0236        | -          | -           |
| 33.0459     | 23000    | 0.0131        | 0.3480     | 0.4136      |
| 33.1894     | 23100    | 0.0121        | -          | -           |
| 33.3329     | 23200    | 0.0164        | -          | -           |
| 33.4763     | 23300    | 0.0209        | -          | -           |
| 33.6198     | 23400    | 0.0119        | -          | -           |
| 33.7633     | 23500    | 0.0029        | 0.3575     | 0.4180      |
| 33.9067     | 23600    | 0.0201        | -          | -           |
| 34.0516     | 23700    | 0.0121        | -          | -           |
| 34.1951     | 23800    | 0.0109        | -          | -           |
| 34.3386     | 23900    | 0.0132        | -          | -           |
| 34.4821     | 24000    | 0.0203        | 0.3446     | 0.4141      |
| 34.6255     | 24100    | 0.0087        | -          | -           |
| 34.7690     | 24200    | 0.0032        | -          | -           |
| 34.9125     | 24300    | 0.0182        | -          | -           |
| 35.0574     | 24400    | 0.0116        | -          | -           |
| 35.2009     | 24500    | 0.0105        | 0.3587     | 0.4117      |
| 35.3443     | 24600    | 0.018         | -          | -           |
| 35.4878     | 24700    | 0.0194        | -          | -           |
| 35.6313     | 24800    | 0.0076        | -          | -           |
| 35.7747     | 24900    | 0.0029        | -          | -           |
| 35.9182     | 25000    | 0.0167        | 0.3529     | 0.4156      |
| 36.0631     | 25100    | 0.0105        | -          | -           |
| 36.2066     | 25200    | 0.0097        | -          | -           |
| 36.3501     | 25300    | 0.0165        | -          | -           |
| 36.4935     | 25400    | 0.0187        | -          | -           |
| 36.6370     | 25500    | 0.0062        | 0.3517     | 0.4173      |
| 36.7805     | 25600    | 0.0034        | -          | -           |
| 36.9240     | 25700    | 0.0173        | -          | -           |
| 37.0689     | 25800    | 0.0091        | -          | -           |
| 37.2123     | 25900    | 0.0093        | -          | -           |
| 37.3558     | 26000    | 0.0152        | 0.3605     | 0.4147      |
| 37.4993     | 26100    | 0.0193        | -          | -           |
| 37.6428     | 26200    | 0.0065        | -          | -           |
| 37.7862     | 26300    | 0.0036        | -          | -           |
| 37.9297     | 26400    | 0.017         | -          | -           |
| 38.0746     | 26500    | 0.009         | 0.3627     | 0.4178      |
| 38.2181     | 26600    | 0.0087        | -          | -           |
| 38.3615     | 26700    | 0.0129        | -          | -           |
| 38.5050     | 26800    | 0.0199        | -          | -           |
| 38.6485     | 26900    | 0.0047        | -          | -           |
| 38.7920     | 27000    | 0.0104        | 0.3535     | 0.4191      |
| 38.9354     | 27100    | 0.0106        | -          | -           |
| 39.0803     | 27200    | 0.0083        | -          | -           |
| 39.2238     | 27300    | 0.0091        | -          | -           |
| 39.3673     | 27400    | 0.0143        | -          | -           |
| 39.5108     | 27500    | 0.018         | 0.3586     | 0.4137      |
| 39.6542     | 27600    | 0.0055        | -          | -           |
| 39.7977     | 27700    | 0.0097        | -          | -           |
| 39.9412     | 27800    | 0.0111        | -          | -           |
| 40.0861     | 27900    | 0.0091        | -          | -           |
| 40.2296     | 28000    | 0.009         | 0.3540     | 0.4166      |
| 40.3730     | 28100    | 0.0145        | -          | -           |
| 40.5165     | 28200    | 0.0165        | -          | -           |
| 40.6600     | 28300    | 0.0041        | -          | -           |
| 40.8034     | 28400    | 0.009         | -          | -           |
| 40.9469     | 28500    | 0.0091        | 0.3541     | 0.4159      |
| 41.0918     | 28600    | 0.0106        | -          | -           |
| 41.2353     | 28700    | 0.0064        | -          | -           |
| 41.3788     | 28800    | 0.0125        | -          | -           |
| 41.5222     | 28900    | 0.0172        | -          | -           |
| 41.6657     | 29000    | 0.0028        | 0.3550     | 0.4151      |
| 41.8092     | 29100    | 0.0097        | -          | -           |
| 41.9527     | 29200    | 0.0086        | -          | -           |
| 42.0976     | 29300    | 0.0099        | -          | -           |
| 42.2410     | 29400    | 0.0064        | -          | -           |
| 42.3845     | 29500    | 0.0127        | 0.3619     | 0.4150      |
| 42.5280     | 29600    | 0.0157        | -          | -           |
| 42.6714     | 29700    | 0.0025        | -          | -           |
| 42.8149     | 29800    | 0.0095        | -          | -           |
| 42.9584     | 29900    | 0.0087        | -          | -           |
| 43.1033     | 30000    | 0.0094        | 0.3591     | 0.4153      |
| 43.2468     | 30100    | 0.007         | -          | -           |
| 43.3902     | 30200    | 0.0114        | -          | -           |
| 43.5337     | 30300    | 0.0166        | -          | -           |
| 43.6772     | 30400    | 0.0023        | -          | -           |
| 43.8207     | 30500    | 0.01          | 0.3582     | 0.4172      |
| 43.9641     | 30600    | 0.0097        | -          | -           |
| 44.1090     | 30700    | 0.01          | -          | -           |
| 44.2525     | 30800    | 0.007         | -          | -           |
| 44.3960     | 30900    | 0.0106        | -          | -           |
| 44.5395     | 31000    | 0.0164        | 0.3626     | 0.4151      |
| 44.6829     | 31100    | 0.0017        | -          | -           |
| 44.8264     | 31200    | 0.0113        | -          | -           |
| 44.9699     | 31300    | 0.0081        | -          | -           |
| 45.1148     | 31400    | 0.0095        | -          | -           |
| 45.2582     | 31500    | 0.0061        | 0.3669     | 0.4152      |
| 45.4017     | 31600    | 0.0111        | -          | -           |
| 45.5452     | 31700    | 0.0157        | -          | -           |
| 45.6887     | 31800    | 0.0015        | -          | -           |
| 45.8321     | 31900    | 0.0109        | -          | -           |
| 45.9756     | 32000    | 0.0085        | 0.3595     | 0.4139      |
| 46.1205     | 32100    | 0.0096        | -          | -           |
| 46.2640     | 32200    | 0.0062        | -          | -           |
| 46.4075     | 32300    | 0.0111        | -          | -           |
| 46.5509     | 32400    | 0.017         | -          | -           |
| 46.6944     | 32500    | 0.0013        | 0.3631     | 0.4154      |
| 46.8379     | 32600    | 0.0123        | -          | -           |
| 46.9813     | 32700    | 0.0076        | -          | -           |
| 47.1263     | 32800    | 0.0088        | -          | -           |
| 47.2697     | 32900    | 0.0065        | -          | -           |
| 47.4132     | 33000    | 0.0116        | 0.3656     | 0.4148      |
| 47.5567     | 33100    | 0.0142        | -          | -           |
| 47.7001     | 33200    | 0.0009        | -          | -           |
| 47.8436     | 33300    | 0.0101        | -          | -           |
| 47.9871     | 33400    | 0.0069        | -          | -           |
| 48.1320     | 33500    | 0.0087        | 0.3643     | 0.4160      |
| 48.2755     | 33600    | 0.005         | -          | -           |
| 48.4189     | 33700    | 0.0118        | -          | -           |
| 48.5624     | 33800    | 0.0147        | -          | -           |
| 48.7059     | 33900    | 0.0008        | -          | -           |
| 48.8494     | 34000    | 0.0115        | 0.3632     | 0.4158      |
| 48.9928     | 34100    | 0.006         | -          | -           |
| 49.1377     | 34200    | 0.0089        | -          | -           |
| 49.2812     | 34300    | 0.0063        | -          | -           |
| 49.4247     | 34400    | 0.0126        | -          | -           |
| 49.5681     | 34500    | 0.0142        | 0.3643     | 0.4157      |
| 49.7116     | 34600    | 0.0008        | -          | -           |
| 49.8551     | 34700    | 0.0137        | -          | -           |
| 49.9986     | 34800    | 0.0044        | 0.3148     | 0.4190      |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.43.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->