anuragshas commited on
Commit
19dfbde
1 Parent(s): b10ee1b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-ha-cv8
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-ha-cv8
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6094
20
+ - Wer: 0.5234
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0001
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 13
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: cosine_with_restarts
47
+ - lr_scheduler_warmup_steps: 1000
48
+ - num_epochs: 100
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
54
+ | 2.9599 | 6.56 | 400 | 2.8650 | 1.0 |
55
+ | 2.7357 | 13.11 | 800 | 2.7377 | 0.9951 |
56
+ | 1.3012 | 19.67 | 1200 | 0.6686 | 0.7111 |
57
+ | 1.0454 | 26.23 | 1600 | 0.5686 | 0.6137 |
58
+ | 0.9069 | 32.79 | 2000 | 0.5576 | 0.5815 |
59
+ | 0.82 | 39.34 | 2400 | 0.5502 | 0.5591 |
60
+ | 0.7413 | 45.9 | 2800 | 0.5970 | 0.5586 |
61
+ | 0.6872 | 52.46 | 3200 | 0.5817 | 0.5428 |
62
+ | 0.634 | 59.02 | 3600 | 0.5636 | 0.5314 |
63
+ | 0.6022 | 65.57 | 4000 | 0.5780 | 0.5229 |
64
+ | 0.5705 | 72.13 | 4400 | 0.6036 | 0.5323 |
65
+ | 0.5408 | 78.69 | 4800 | 0.6119 | 0.5336 |
66
+ | 0.5225 | 85.25 | 5200 | 0.6105 | 0.5270 |
67
+ | 0.5265 | 91.8 | 5600 | 0.6034 | 0.5231 |
68
+ | 0.5154 | 98.36 | 6000 | 0.6094 | 0.5234 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.16.1
74
+ - Pytorch 1.10.0+cu111
75
+ - Datasets 1.18.2
76
+ - Tokenizers 0.11.0