anuragshas
commited on
Commit
•
f1ff9aa
1
Parent(s):
1aead65
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: te
|
3 |
+
datasets:
|
4 |
+
- openslr
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
- xlsr-fine-tuning-week
|
12 |
+
license: apache-2.0
|
13 |
+
model-index:
|
14 |
+
- name: Anurag Singh XLSR Wav2Vec2 Large 53 Telugu
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: OpenSLR te
|
21 |
+
type: openslr
|
22 |
+
args: te
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 44.98
|
27 |
+
---
|
28 |
+
# Wav2Vec2-Large-XLSR-53-Telugu
|
29 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Telugu using the [OpenSLR SLR66](http://openslr.org/66/) dataset.
|
30 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
+
## Usage
|
32 |
+
The model can be used directly (without a language model) as follows:
|
33 |
+
```python
|
34 |
+
import torch
|
35 |
+
import torchaudio
|
36 |
+
from datasets import load_dataset
|
37 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
38 |
+
import pandas as pd
|
39 |
+
|
40 |
+
# Evaluation notebook contains the procedure to download the data
|
41 |
+
df = pd.read_csv("/content/te/test.tsv", sep="\t")
|
42 |
+
df["path"] = "/content/te/clips/" + df["path"]
|
43 |
+
test_dataset = Dataset.from_pandas(df)
|
44 |
+
|
45 |
+
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
|
46 |
+
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
|
47 |
+
|
48 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
49 |
+
# Preprocessing the datasets.
|
50 |
+
# We need to read the aduio files as arrays
|
51 |
+
def speech_file_to_array_fn(batch):
|
52 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
54 |
+
return batch
|
55 |
+
|
56 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
+
with torch.no_grad():
|
59 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
60 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
61 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
62 |
+
print("Reference:", test_dataset["sentence"][:2])
|
63 |
+
```
|
64 |
+
## Evaluation
|
65 |
+
```python
|
66 |
+
import torch
|
67 |
+
import torchaudio
|
68 |
+
from datasets import Dataset, load_metric
|
69 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
70 |
+
import re
|
71 |
+
from sklearn.model_selection import train_test_split
|
72 |
+
import pandas as pd
|
73 |
+
|
74 |
+
# Evaluation notebook contains the procedure to download the data
|
75 |
+
df = pd.read_csv("/content/te/test.tsv", sep="\t")
|
76 |
+
df["path"] = "/content/te/clips/" + df["path"]
|
77 |
+
test_dataset = Dataset.from_pandas(df)
|
78 |
+
wer = load_metric("wer")
|
79 |
+
|
80 |
+
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
|
81 |
+
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
|
82 |
+
model.to("cuda")
|
83 |
+
|
84 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\_\;\:\"\“\%\‘\”\।\’\'\&]'
|
85 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
86 |
+
|
87 |
+
def normalizer(text):
|
88 |
+
# Use your custom normalizer
|
89 |
+
text = text.replace("\\n","\n")
|
90 |
+
text = ' '.join(text.split())
|
91 |
+
text = re.sub(r'''([a-z]+)''','',text,flags=re.IGNORECASE)
|
92 |
+
text = re.sub(r'''%'''," శాతం ", text)
|
93 |
+
text = re.sub(r'''(/|-|_)'''," ", text)
|
94 |
+
text = re.sub("ై","ై", text)
|
95 |
+
text = text.strip()
|
96 |
+
return text
|
97 |
+
|
98 |
+
def speech_file_to_array_fn(batch):
|
99 |
+
batch["sentence"] = normalizer(batch["sentence"])
|
100 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()+ " "
|
101 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
102 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
103 |
+
return batch
|
104 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
105 |
+
# Preprocessing the datasets.
|
106 |
+
# We need to read the aduio files as arrays
|
107 |
+
def evaluate(batch):
|
108 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
109 |
+
with torch.no_grad():
|
110 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
111 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
112 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
113 |
+
return batch
|
114 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
115 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
116 |
+
```
|
117 |
+
|
118 |
+
**Test Result**: 44.98%
|
119 |
+
## Training
|
120 |
+
70% of the OpenSLR Marathi dataset was used for training.
|
121 |
+
|
122 |
+
Train Split of annotations is [here](https://www.dropbox.com/s/xqc0wtour7f9h4c/train.tsv)
|
123 |
+
|
124 |
+
Test Split of annotations is [here](https://www.dropbox.com/s/qw1uy63oj4qdiu4/test.tsv)
|
125 |
+
|
126 |
+
Training Data Preparation notebook can be found [here](https://colab.research.google.com/drive/1_VR1QtY9qoiabyXBdJcOI29-xIKGdIzU?usp=sharing)
|
127 |
+
|
128 |
+
Training notebook can be found[here](https://colab.research.google.com/drive/14N-j4m0Ng_oktPEBN5wiUhDDbyrKYt8I?usp=sharing)
|
129 |
+
|
130 |
+
Evaluation notebook is [here](https://colab.research.google.com/drive/1SLEvbTWBwecIRTNqpQ0fFTqmr1-7MnSI?usp=sharing)
|