anuragshas
commited on
Commit
β’
e26d775
1
Parent(s):
738149b
Update README.md
Browse files
README.md
CHANGED
@@ -42,19 +42,19 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
42 |
# Preprocessing the datasets.
|
43 |
# We need to read the aduio files as arrays
|
44 |
def speech_file_to_array_fn(batch):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
49 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
50 |
with torch.no_grad():
|
51 |
-
|
52 |
predicted_ids = torch.argmax(logits, dim=-1)
|
53 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
54 |
print("Reference:", test_dataset["sentence"][:2])
|
55 |
```
|
56 |
## Evaluation
|
57 |
-
The model can be evaluated as follows on the
|
58 |
```python
|
59 |
import torch
|
60 |
import torchaudio
|
@@ -66,25 +66,25 @@ wer = load_metric("wer")
|
|
66 |
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil")
|
67 |
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil")
|
68 |
model.to("cuda")
|
69 |
-
chars_to_ignore_regex = '[
|
70 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
71 |
# Preprocessing the datasets.
|
72 |
# We need to read the aduio files as arrays
|
73 |
def speech_file_to_array_fn(batch):
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
79 |
# Preprocessing the datasets.
|
80 |
# We need to read the aduio files as arrays
|
81 |
def evaluate(batch):
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
89 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
90 |
```
|
|
|
42 |
# Preprocessing the datasets.
|
43 |
# We need to read the aduio files as arrays
|
44 |
def speech_file_to_array_fn(batch):
|
45 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
46 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
47 |
+
return batch
|
48 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
49 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
50 |
with torch.no_grad():
|
51 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
52 |
predicted_ids = torch.argmax(logits, dim=-1)
|
53 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
54 |
print("Reference:", test_dataset["sentence"][:2])
|
55 |
```
|
56 |
## Evaluation
|
57 |
+
The model can be evaluated as follows on the Tamil test data of Common Voice.
|
58 |
```python
|
59 |
import torch
|
60 |
import torchaudio
|
|
|
66 |
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil")
|
67 |
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil")
|
68 |
model.to("cuda")
|
69 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β\%\β\β\ΰ₯€\β\']'
|
70 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
71 |
# Preprocessing the datasets.
|
72 |
# We need to read the aduio files as arrays
|
73 |
def speech_file_to_array_fn(batch):
|
74 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
75 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
76 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
77 |
+
return batch
|
78 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
79 |
# Preprocessing the datasets.
|
80 |
# We need to read the aduio files as arrays
|
81 |
def evaluate(batch):
|
82 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
83 |
+
with torch.no_grad():
|
84 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
85 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
86 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
87 |
+
return batch
|
88 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
89 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
90 |
```
|