File size: 2,130 Bytes
f1bd830
5a0cc3e
 
f1bd830
 
5a0cc3e
f1bd830
 
5a0cc3e
f1bd830
 
 
5a0cc3e
f1bd830
 
 
 
 
5a0cc3e
 
f1bd830
 
 
 
 
 
 
 
 
 
 
 
5a0cc3e
f1bd830
5a0cc3e
f1bd830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- hi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hindi
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 hi
      type: mozilla-foundation/common_voice_11_0
      config: hi
      split: test
      args: hi
    metrics:
    - name: Wer
      type: wer
      value: 22.429210134128166
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Hindi

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 hi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6260
- Wer: 22.4292

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-06
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0176        | 7.01  | 500  | 0.4165          | 22.5066 |
| 0.0015        | 14.01 | 1000 | 0.5186          | 22.2573 |
| 0.0004        | 21.02 | 1500 | 0.5741          | 22.2401 |
| 0.0002        | 28.02 | 2000 | 0.6025          | 22.3834 |
| 0.0002        | 36.01 | 2500 | 0.6197          | 22.3977 |
| 0.0002        | 43.01 | 3000 | 0.6260          | 22.4292 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2