anushettypsl's picture
Add new SentenceTransformer model
ed10889 verified
metadata
base_model: BAAI/bge-base-en-v1.5
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      The consolidated financial statements and accompanying notes listed in
      Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included
      elsewhere in this Annual Report on Form 10-K.
    sentences:
      - >-
        What is the carrying value of the indefinite-lived intangible assets
        related to the Certificate of Needs and Medicare licenses as of December
        31, 2023?
      - >-
        What sections of the Annual Report on Form 10-K contain the company's
        financial statements?
      - >-
        What was the effective tax rate excluding discrete net tax benefits for
        the year 2022?
  - source_sentence: >-
      Consumers are served through Amazon's online and physical stores with an
      emphasis on selection, price, and convenience.
    sentences:
      - >-
        What decision did the European Commission make on July 10, 2023
        regarding the United States?
      - >-
        What are the primary offerings to consumers through Amazon's online and
        physical stores?
      - >-
        What activities are included in the services and other revenue segment
        of General Motors Company?
  - source_sentence: >-
      Visa has traditionally referred to their structure of facilitating secure,
      reliable, and efficient money movement among consumers, issuing and
      acquiring financial institutions, and merchants as the 'four-party' model.
    sentences:
      - >-
        What model does Visa traditionally refer to regarding their transaction
        process among consumers, financial institutions, and merchants?
      - >-
        What percentage of Meta's U.S. workforce in 2023 were represented by
        people with disabilities, veterans, and members of the LGBTQ+ community?
      - >-
        What are the revenue sources for the Company’s Health Care Benefits
        Segment?
  - source_sentence: >-
      In addition to LinkedIn’s free services, LinkedIn offers monetized
      solutions: Talent Solutions, Marketing Solutions, Premium Subscriptions,
      and Sales Solutions. Talent Solutions provide insights for workforce
      planning and tools to hire, nurture, and develop talent. Talent Solutions
      also includes Learning Solutions, which help businesses close critical
      skills gaps in times where companies are having to do more with existing
      talent.
    sentences:
      - >-
        What were the major factors contributing to the increased expenses
        excluding interest for Investor Services and Advisor Services in 2023?
      - >-
        What were the pre-tax earnings of the manufacturing sector in 2023,
        2022, and 2021?
      - What does LinkedIn's Talent Solutions include?
  - source_sentence: >-
      Management assessed the effectiveness of the company’s internal control
      over financial reporting as of December 31, 2023. In making this
      assessment, we used the criteria set forth by the Committee of Sponsoring
      Organizations of the Treadway Commission (COSO) in Internal
      Control—Integrated Framework (2013).
    sentences:
      - >-
        What criteria did Caterpillar Inc. use to assess the effectiveness of
        its internal control over financial reporting as of December 31, 2023?
      - What are the primary components of U.S. sales volumes for Ford?
      - >-
        What was the percentage increase in Schwab's common stock dividend in
        2022?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6914285714285714
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8228571428571428
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.86
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9071428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6914285714285714
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2742857142857143
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17199999999999996
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0907142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6914285714285714
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8228571428571428
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.86
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9071428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7999927468909634
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7656870748299317
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7691211566434173
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6857142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8185714285714286
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8642857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.91
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6857142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27285714285714285
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17285714285714285
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.091
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6857142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8185714285714286
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8642857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.91
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7973078919341674
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7612874149659863
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7643050419927908
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6871428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8157142857142857
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8557142857142858
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8957142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6871428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27190476190476187
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17114285714285712
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08957142857142855
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6871428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8157142857142857
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8557142857142858
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8957142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7921743560810587
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7588843537414965
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.762721290382
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6671428571428571
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8042857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.84
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8771428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6671428571428571
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2680952380952381
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16799999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0877142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6671428571428571
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8042857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.84
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8771428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7738979976127899
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7405068027210884
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7449449119054848
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.64
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7814285714285715
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8185714285714286
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8585714285714285
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.64
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2604761904761905
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1637142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08585714285714285
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.64
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7814285714285715
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8185714285714286
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8585714285714285
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7511688724117889
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7165209750566893
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.721430862082856
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("anushettypsl/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Management assessed the effectiveness of the company’s internal control over financial reporting as of December 31, 2023. In making this assessment, we used the criteria set forth by the Committee of Sponsoring Organizations of the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).',
    'What criteria did Caterpillar Inc. use to assess the effectiveness of its internal control over financial reporting as of December 31, 2023?',
    'What are the primary components of U.S. sales volumes for Ford?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6914
cosine_accuracy@3 0.8229
cosine_accuracy@5 0.86
cosine_accuracy@10 0.9071
cosine_precision@1 0.6914
cosine_precision@3 0.2743
cosine_precision@5 0.172
cosine_precision@10 0.0907
cosine_recall@1 0.6914
cosine_recall@3 0.8229
cosine_recall@5 0.86
cosine_recall@10 0.9071
cosine_ndcg@10 0.8
cosine_mrr@10 0.7657
cosine_map@100 0.7691

Information Retrieval

Metric Value
cosine_accuracy@1 0.6857
cosine_accuracy@3 0.8186
cosine_accuracy@5 0.8643
cosine_accuracy@10 0.91
cosine_precision@1 0.6857
cosine_precision@3 0.2729
cosine_precision@5 0.1729
cosine_precision@10 0.091
cosine_recall@1 0.6857
cosine_recall@3 0.8186
cosine_recall@5 0.8643
cosine_recall@10 0.91
cosine_ndcg@10 0.7973
cosine_mrr@10 0.7613
cosine_map@100 0.7643

Information Retrieval

Metric Value
cosine_accuracy@1 0.6871
cosine_accuracy@3 0.8157
cosine_accuracy@5 0.8557
cosine_accuracy@10 0.8957
cosine_precision@1 0.6871
cosine_precision@3 0.2719
cosine_precision@5 0.1711
cosine_precision@10 0.0896
cosine_recall@1 0.6871
cosine_recall@3 0.8157
cosine_recall@5 0.8557
cosine_recall@10 0.8957
cosine_ndcg@10 0.7922
cosine_mrr@10 0.7589
cosine_map@100 0.7627

Information Retrieval

Metric Value
cosine_accuracy@1 0.6671
cosine_accuracy@3 0.8043
cosine_accuracy@5 0.84
cosine_accuracy@10 0.8771
cosine_precision@1 0.6671
cosine_precision@3 0.2681
cosine_precision@5 0.168
cosine_precision@10 0.0877
cosine_recall@1 0.6671
cosine_recall@3 0.8043
cosine_recall@5 0.84
cosine_recall@10 0.8771
cosine_ndcg@10 0.7739
cosine_mrr@10 0.7405
cosine_map@100 0.7449

Information Retrieval

Metric Value
cosine_accuracy@1 0.64
cosine_accuracy@3 0.7814
cosine_accuracy@5 0.8186
cosine_accuracy@10 0.8586
cosine_precision@1 0.64
cosine_precision@3 0.2605
cosine_precision@5 0.1637
cosine_precision@10 0.0859
cosine_recall@1 0.64
cosine_recall@3 0.7814
cosine_recall@5 0.8186
cosine_recall@10 0.8586
cosine_ndcg@10 0.7512
cosine_mrr@10 0.7165
cosine_map@100 0.7214

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 44.33 tokens
    • max: 289 tokens
    • min: 9 tokens
    • mean: 20.43 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    The Company defines fair value as the price received to transfer an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. In accordance with ASC 820, Fair Value Measurements and Disclosures, the Company uses the fair value hierarchy which prioritizes the inputs used to measure fair value. The hierarchy gives the highest priority to unadjusted quoted prices in active markets for identical assets or liabilities (Level 1), observable inputs other than quoted prices (Level 2), and unobservable inputs (Level 3). What is the role of Level 1, Level 2, and Level 3 inputs in the fair value hierarchy according to ASC 820?
    In the event of conversion of the Notes, if shares are delivered to the Company under the Capped Call Transactions, they will offset the dilutive effect of the shares that the Company would issue under the Notes. What happens to the dilutive effect of shares issued under the Notes if shares are delivered to the Company under the Capped Call Transactions during the conversion?
    Marketing expenses increased $48.8 million to $759.2 million in the year ended December 31, 2023 compared to the year ended December 31, 2022. How much did the marketing expenses increase in the year ended December 31, 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_map@100 dim_512_cosine_map@100 dim_256_cosine_map@100 dim_128_cosine_map@100 dim_64_cosine_map@100
0.8122 10 1.5602 - - - - -
0.9746 12 - 0.7540 0.7541 0.7492 0.7279 0.6920
1.6244 20 0.6618 - - - - -
1.9492 24 - 0.7653 0.7624 0.7579 0.7422 0.7204
2.4365 30 0.4579 - - - - -
2.9239 36 - 0.7682 0.7646 0.7626 0.7441 0.7229
3.2487 40 0.3997 - - - - -
3.8985 48 - 0.7691 0.7643 0.7627 0.7449 0.7214
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.0
  • Transformers: 4.41.2
  • PyTorch: 2.2.0a0+6a974be
  • Accelerate: 0.27.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}