File size: 7,403 Bytes
ff72c45 3ec4efe ff72c45 3ec4efe ff72c45 3ec4efe ff72c45 3ec4efe ff72c45 3ec4efe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
library_name: keras
---
# tokun
> `to-kun` took tokens to t-can
Current tokenizers have notorious issues that are bringing all the LLMs down.
`tokun` is a model specialized in text embedding.
It is **lossless** while providing **high input compression**.
`tokun` produces vectors of dimension 256 equivalent to 64 UTF-32-BE bytes.
IE each embedding can be thought of as a *token of length 16 characters*.
But these vectors are more than basic IDs, they keep meaningful information on their constituting parts.
## Features
The model produces vector embeddings that can be directly ingested by another model.
Regular tokens are unrelated IDs, while `tokun` has the following properties:
- **international**: `tokun` performs evenly on the whole Unicode space
- **compression**: the sequence length is divided by 16
- **embeddings**: the output vectors have only a dimension 256
- **lossless**: embeddings store all the information up to the byte level
- **built-ins**: Unicode has built-in special tokens, no need for `<|im_start|>`
- **meaningful**: embeddings are natively related to each-other based on their parts
## Installation
In all cases, the model requires the code from the package `tokun`:
```shell
pip install tokun
```
### From Hugging Face
Login to Hugging Face:
```shell
huggingface-cli login
```
Download the repository:
```python
import huggingface_hub as hh
api = hh.HfApi()
api.snapshot_download(repo_id='apehex/tokun', local_dir='tokun/')
```
Import the tokenizer and model:
```python
tokenizer = tokun.huggingface.ByteTokenizer()
model = hh.from_pretrained_keras('tokun/variants/4x16/')
```
### With Base Tensorflow / Keras
You can directly load the weights [from the repository](../models/).
For the most performant variant of the model, `4x16`:
```python
import tensorflow as tf
import tokun.model
import urllib.request
urllib.request.urlretrieve('https://github.com/apehex/tokun/raw/main/models/4x16/1/6.3.keras', 'model.keras')
model = tf.keras.models.load_model('model.keras')
```
## Usage
Since it is small (between 1 and 2M parameters depending on the variant), the model can also be [trained on Google Colab][notebook-file-tokun-train].
We will be encoding and decoding the following sample:
```python
__s = """Une unité lexicale ou token lexical ou plus simplement token est un couple composé d'un nom et d'une valeur optionnelle (e.g. 135677)."""
```
### With Hugging Face
The sequence dimension is fixed to 512 because exporting the Keras model requires to specify the input shape.
So the sample is padded to `16 * 512` characters or `64 * 512` bytes.
```python
# encode with UTF-32
__x = tokenizer.batch_encode_plus(batch_text_or_text_pairs=[__s], padding='max_length', max_length=64 * 512, add_special_tokens=False)
__x = tf.convert_to_tensor(__x['input_ids'])
# tokenize
__e = model.layers[1](__x) # encoder
# these embeddings would be the input of a LLM
__o = llm(__e) # replace with your LLM
# detokenize
__p = model.layers[2](__o) # decoder
# interpret probabilities as byte indexes
__y = tokun.pipeline.postprocess(__p)
```
```python
print(len(__s))
# 252
print(__x.shape) # 16 * 512 characters = 64 * 512 bytes
# (1, 32768)
print(__e.shape) # 512 embeddings
# (1, 512, 256)
print(__p.shape) # back to x shape
# (1, 32768, 256)
```
> Note: the base Tensorflow implementation operates on any sequence dimension (see below)
### With Base Tensorflow / Keras
```python
__x = tokun.pipeline.preprocess(text=__s, groups=[4, 16], expand=[1], flatten=True)
__e = model._encoder(__x) # final embedding = input for another model
# these embeddings would be the input of a LLM
__o = llm(__e) # replace with your LLM
# detokenize
__p = MODEL._decoder(__o)
# interpret probabilities as byte indexes
__y = tokun.pipeline.postprocess(__p)
```
The OG version doesn't fix the sequence dimension:
```python
print(len(__s))
# 252
print(__x.shape) # 4 * 252 = 1008 padded to 1024 bytes
# (1, 1024)
print(__e.shape) # 252 / 16 = 1024 / 64 = 16
# (1, 16, 256)
print(__p.shape) # back to x shape
# (1, 1024, 256)
```
## Training and evaluation data
`tokun` was **trained on random sequences** of UTF-32-BE bytes, so that it covers the first 4 planes of Unicode.
Validation was also performed on the 7 languages of [MLQA][github-mlqa] to make sure the model keeps its accuracy on regular text.
## Resources
### Notebooks
Final model:
- train: [File][notebook-file-tokun-train] / [Colab][notebook-colab-tokun-train]
- demo: [File][notebook-file-tokun-demo] / [Colab][notebook-colab-tokun-demo]
Older / simpler model iterations:
- `tokun-1`: [File][notebook-file-tokun-1] / [Colab][notebook-colab-tokun-1]
- `tokun-4`: [File][notebook-file-tokun-4] / [Colab][notebook-colab-tokun-4]
- `tokun-16`: [File][notebook-file-tokun-16] / [Colab][notebook-colab-tokun-16]
### Articles
Main article:
- on [Github][article-file-tokun]
- on [Hugging Face][article-hugging-face]
Notes on each iteration:
- `tokun-1`: [Github][article-file-tokun-1]
- `tokun-4`: [Github][article-file-tokun-4]
- `tokun-16`: [Github][article-file-tokun-16]
## TODO
See [TODO](TODO.md).
## Credits
This project was inspired by a video from Andrej Karpathy, ["Let's build the GPT tokenizer"][youtube-karpathy-tokenizer].
## License
Licensed under the [aGPLv3](LICENSE.md).
[article-file-tokun]: https://github.com/apehex/tokun/blob/main/articles/tokun.md
[article-file-tokun-1]: https://github.com/apehex/tokun/blob/main/articles/tokun.1.md
[article-file-tokun-4]: https://github.com/apehex/tokun/blob/main/articles/tokun.4.md
[article-file-tokun-16]: https://github.com/apehex/tokun/blob/main/articles/tokun.16.md
[article-hugging-face]: https://huggingface.co/blog/apehex/tokenization-is-a-dead-weight
[article-notion-tokun-1]: https://apehex.notion.site/Tokun-1-e03c438a39fe49fcb2ce303eb63b2e73
[article-notion-tokun-4]: https://apehex.notion.site/Tokun-4-c8b4a3bd1270485a908287869553e9f2
[article-notion-tokun-16]: https://apehex.notion.site/Tokun-16-ecf35d5207ab401d85d3aa21d0b09538
[notebook-colab-tokun-1]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.1.ipynb
[notebook-colab-tokun-4]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.4.ipynb
[notebook-colab-tokun-16]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.16.ipynb
[notebook-colab-tokun-demo]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.demo.ipynb
[notebook-colab-tokun-train]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.train.ipynb
[notebook-file-tokun-1]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.1.ipynb
[notebook-file-tokun-4]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.4.ipynb
[notebook-file-tokun-16]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.16.ipynb
[notebook-file-tokun-demo]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.demo.ipynb
[notebook-file-tokun-train]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.train.ipynb
[notebook-hf-tokun-demo]: ../notebooks/tokun.demo.ipynb
[notebook-hf-tokun-train]: ../notebooks/tokun.train.ipynb
[notebook-kaggle-tokun-demo]: ../notebooks/tokun.demo.ipynb
[notebook-kaggle-tokun-train]: ../notebooks/tokun.train.ipynb
[youtube-karpathy-tokenizer]: https://www.youtube.com/watch?v=zduSFxRajkE
|