--- library_name: tf-keras --- # tokun > `to-kun` took tokens to t-can ``` The weights in this repository were trained with the architecture v0.11.2 of the package "tokun". Later versions are incompatible and need to be trained from scratch. ``` Current tokenizers have notorious issues that are bringing all the LLMs down. `tokun` is a model specialized in text embedding. It is **lossless** while providing **high input compression**. `tokun` produces vectors of dimension 256 equivalent to 64 UTF-32-BE bytes. IE each embedding can be thought of as a *token of length 16 characters*. But these vectors are more than basic IDs, they keep meaningful information on their constituting parts. ## Features The model produces vector embeddings that can be directly ingested by another model. Regular tokens are unrelated IDs, while `tokun` has the following properties: - **international**: `tokun` performs evenly on the whole Unicode space - **compression**: the sequence length is divided by 16 - **embeddings**: the output vectors have only a dimension 256 - **lossless**: embeddings store all the information up to the byte level - **built-ins**: Unicode has built-in special tokens, no need for `<|im_start|>` - **meaningful**: embeddings are natively related to each-other based on their parts ## Installation In all cases, the model requires the code from the package `tokun`: ```shell pip install tokun ``` ### From Hugging Face Login to Hugging Face: ```shell huggingface-cli login ``` Download the repository: ```python import huggingface_hub as hh api = hh.HfApi() api.snapshot_download(repo_id='apehex/tokun', local_dir='tokun/') ``` Import the tokenizer and model: ```python tokenizer = tokun.huggingface.ByteTokenizer() model = hh.from_pretrained_keras('tokun/variants/16x4/') ``` ### With Base Tensorflow / Keras You can directly load the weights [from the repository](../models/). For the most performant variant of the model, `16x4`: ```python import tensorflow as tf import tokun.model import urllib.request urllib.request.urlretrieve('https://github.com/apehex/tokun/raw/main/models/16x4/1/7.7.keras', 'model.keras') model = tf.keras.models.load_model('model.keras', compile=False) ``` ## Usage Since it is small (between 1 and 2M parameters depending on the variant), the model can also be [trained on Google Colab][notebook-file-tokun-train]. We will be encoding and decoding the following sample: ```python __s = """Une unité lexicale ou token lexical ou plus simplement token est un couple composé d'un nom et d'une valeur optionnelle (e.g. 135677).""" ``` ### With Hugging Face The sequence dimension is fixed to 512 because exporting the Keras model requires to specify the input shape. So the sample is padded to `16 * 512` characters or `64 * 512` bytes. ```python # encode with UTF-32 __x = tokenizer.batch_encode_plus(batch_text_or_text_pairs=[__s], padding='max_length', max_length=64 * 512, add_special_tokens=False) __x = tf.convert_to_tensor(__x['input_ids']) # tokenize __e = model.layers[1](__x) # encoder # these embeddings would be the input of a LLM __o = llm(__e) # replace with your LLM # detokenize __p = model.layers[2](__o) # decoder # interpret probabilities as byte indexes __y = tokun.pipeline.postprocess(__p) ``` ```python print(len(__s)) # 252 print(__x.shape) # 16 * 512 characters = 64 * 512 bytes # (1, 32768) print(__e.shape) # 512 embeddings # (1, 512, 256) print(__p.shape) # back to x shape # (1, 32768, 256) ``` > Note: the base Tensorflow implementation operates on any sequence dimension (see below) ### With Base Tensorflow / Keras ```python __x = tokun.pipeline.preprocess(text=__s, groups=[16, 4], expand=[1], flatten=True) __e = model._encoder(__x) # final embedding = input for another model # these embeddings would be the input of a LLM __o = llm(__e) # replace with your LLM # detokenize __p = MODEL._decoder(__o) # interpret probabilities as byte indexes __y = tokun.pipeline.postprocess(__p) ``` The OG version doesn't fix the sequence dimension: ```python print(len(__s)) # 252 print(__x.shape) # 4 * 252 = 1008 padded to 1024 bytes # (1, 1024) print(__e.shape) # 252 / 16 = 1024 / 64 = 16 # (1, 16, 256) print(__p.shape) # back to x shape # (1, 1024, 256) ``` ## Training and evaluation data `tokun` was **trained on random sequences** of UTF-32-BE bytes, so that it covers the first 4 planes of Unicode. Validation was also performed on the 7 languages of [MLQA][github-mlqa] to make sure the model keeps its accuracy on regular text. ## Resources ### Notebooks Final model: - train: [File][notebook-file-tokun-train] / [Colab][notebook-colab-tokun-train] - demo: [File][notebook-file-tokun-demo] / [Colab][notebook-colab-tokun-demo] Older / simpler model iterations: - `tokun-1`: [File][notebook-file-tokun-1] / [Colab][notebook-colab-tokun-1] - `tokun-4`: [File][notebook-file-tokun-4] / [Colab][notebook-colab-tokun-4] - `tokun-16`: [File][notebook-file-tokun-16] / [Colab][notebook-colab-tokun-16] ### Articles Main article: - on [Github][article-file-tokun] - on [Hugging Face][article-hugging-face] Notes on each iteration: - `tokun-1`: [Github][article-file-tokun-1] - `tokun-4`: [Github][article-file-tokun-4] - `tokun-16`: [Github][article-file-tokun-16] ## Credits This project was inspired by a video from Andrej Karpathy, ["Let's build the GPT tokenizer"][youtube-karpathy-tokenizer]. ## License Licensed under the [aGPLv3](LICENSE.md). [article-file-tokun]: https://github.com/apehex/tokun/blob/main/articles/tokun.md [article-file-tokun-1]: https://github.com/apehex/tokun/blob/main/articles/tokun.1.md [article-file-tokun-4]: https://github.com/apehex/tokun/blob/main/articles/tokun.4.md [article-file-tokun-16]: https://github.com/apehex/tokun/blob/main/articles/tokun.16.md [article-hugging-face]: https://huggingface.co/blog/apehex/tokenization-is-a-dead-weight [article-notion-tokun-1]: https://apehex.notion.site/Tokun-1-e03c438a39fe49fcb2ce303eb63b2e73 [article-notion-tokun-4]: https://apehex.notion.site/Tokun-4-c8b4a3bd1270485a908287869553e9f2 [article-notion-tokun-16]: https://apehex.notion.site/Tokun-16-ecf35d5207ab401d85d3aa21d0b09538 [notebook-colab-tokun-1]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.1.ipynb [notebook-colab-tokun-4]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.4.ipynb [notebook-colab-tokun-16]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.16.ipynb [notebook-colab-tokun-demo]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.demo.ipynb [notebook-colab-tokun-train]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.train.ipynb [notebook-file-tokun-1]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.1.ipynb [notebook-file-tokun-4]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.4.ipynb [notebook-file-tokun-16]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.16.ipynb [notebook-file-tokun-demo]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.demo.ipynb [notebook-file-tokun-train]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.train.ipynb [notebook-hf-tokun-demo]: ../notebooks/tokun.demo.ipynb [notebook-hf-tokun-train]: ../notebooks/tokun.train.ipynb [notebook-kaggle-tokun-demo]: ../notebooks/tokun.demo.ipynb [notebook-kaggle-tokun-train]: ../notebooks/tokun.train.ipynb [youtube-karpathy-tokenizer]: https://www.youtube.com/watch?v=zduSFxRajkE