OpenCLIP
PyTorch
clip
File size: 2,643 Bytes
bd1bf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: other
license_name: apple-sample-code-license
license_link: LICENSE
---

A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-2B. 
Data Filtering Networks (DFNs) are small networks used to automatically filter large pools of uncurated data. 
This model was trained on 2B images that were filtered from a pool of 12.8B uncurated image-text pairs 
(12.8B image-text pairs from CommonPool-12.8B).

This model has been converted to PyTorch from the original JAX checkpoints from Axlearn (https://github.com/apple/axlearn). 
These weights are directly usable in OpenCLIP (image + text).


## Model Details

- **Model Type:**  Contrastive Image-Text, Zero-Shot Image Classification.
- **Dataset:** DFN-2b
- **Papers:**
  - Data Filtering Networks: https://arxiv.org/abs/2309.17425
- **Examples Seen:** 39B


## Model Metrics 
| Eval Dataset                |   Metric |
|:-----------------------|---------:|
| ImageNet 1k            | 0.8219  |
| Caltech-101            | 0.9500 |
| CIFAR-10               | 0.9864   |
| CIFAR-100              | 0.8934   |
| CLEVR Counts           | 0.3403   |
| CLEVR Distance         | 0.2321 |
| Country211             | 0.3198  |
| Describable Textures   | 0.6681  |
| EuroSAT                | 0.6819 |
| FGVC Aircraft          | 0.4829 |
| Food-101               | 0.9498 |
| GTSRB                  | 0.6329 |
| ImageNet Sketch        | 0.7043 |
| ImageNet v2            | 0.7570   |
| ImageNet-A             | 0.6745   |
| ImageNet-O             | 0.3605   |
| ImageNet-R             | 0.9184 |
| KITTI Vehicle Distance | 0.2391 |
| MNIST                  | 0.8745   |
| ObjectNet              | 0.7477 |
| Oxford Flowers-102     | 0.8784 |
| Oxford-IIIT Pet        | 0.9611 |
| Pascal VOC 2007        | 0.8472  |
| PatchCamelyon          | 0.6418  |
| Rendered SST2          | 0.5815 |
| RESISC45               | 0.7300 |
| Stanford Cars          | 0.9465 |
| STL-10                 | 0.9889 |
| SUN397                 | 0.7594 |
| SVHN                   | 0.6573 |
| Flickr                 | 0.8467   |
| MSCOCO                 | 0.5957 |
| WinoGAViL              | 0.5551 |
| iWildCam               | 0.1857  |
| Camelyon17             | 0.6540 |
| FMoW                   | 0.1824 |
| Dollar Street          | 0.6822 |
| GeoDE                  | 0.9253  |
| **Average**                | **0.68039** |

## Citation
```bibtex
@article{fang2023data,
  title={Data Filtering Networks},
  author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal},
  journal={arXiv preprint arXiv:2309.17425},
  year={2023}
}

```