add model
Browse files- config.json +37 -0
- configuration_distilbert_ane.py +5 -0
- modeling_distilbert_ane.py +625 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DistilBertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_distilbert_ane.DistilBertConfig",
|
9 |
+
"AutoModelForSequenceClassification": "modeling_distilbert_ane.DistilBertForSequenceClassification"
|
10 |
+
},
|
11 |
+
"dim": 768,
|
12 |
+
"dropout": 0.1,
|
13 |
+
"finetuning_task": "sst-2",
|
14 |
+
"hidden_dim": 3072,
|
15 |
+
"id2label": {
|
16 |
+
"0": "NEGATIVE",
|
17 |
+
"1": "POSITIVE"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"label2id": {
|
21 |
+
"NEGATIVE": 0,
|
22 |
+
"POSITIVE": 1
|
23 |
+
},
|
24 |
+
"max_position_embeddings": 512,
|
25 |
+
"model_type": "distilbert",
|
26 |
+
"n_heads": 12,
|
27 |
+
"n_layers": 6,
|
28 |
+
"output_past": true,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"qa_dropout": 0.1,
|
31 |
+
"seq_classif_dropout": 0.2,
|
32 |
+
"sinusoidal_pos_embds": false,
|
33 |
+
"tie_weights_": true,
|
34 |
+
"torch_dtype": "float32",
|
35 |
+
"transformers_version": "4.20.0.dev0",
|
36 |
+
"vocab_size": 30522
|
37 |
+
}
|
configuration_distilbert_ane.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.distilbert import configuration_distilbert
|
2 |
+
|
3 |
+
class DistilBertConfig(configuration_distilbert.DistilBertConfig):
|
4 |
+
def __init__(self, **kwargs):
|
5 |
+
super().__init__(**kwargs)
|
modeling_distilbert_ane.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2022 Apple Inc. All Rights Reserved.
|
2 |
+
|
3 |
+
# IMPORTANT: This Apple software is supplied to you by Apple
|
4 |
+
# Inc. ("Apple") in consideration of your agreement to the following
|
5 |
+
# terms, and your use, installation, modification or redistribution of
|
6 |
+
# this Apple software constitutes acceptance of these terms. If you do
|
7 |
+
# not agree with these terms, please do not use, install, modify or
|
8 |
+
# redistribute this Apple software.
|
9 |
+
|
10 |
+
# In consideration of your agreement to abide by the following terms, and
|
11 |
+
# subject to these terms, Apple grants you a personal, non-exclusive
|
12 |
+
# license, under Apple's copyrights in this original Apple software (the
|
13 |
+
# "Apple Software"), to use, reproduce, modify and redistribute the Apple
|
14 |
+
# Software, with or without modifications, in source and/or binary forms;
|
15 |
+
# provided that if you redistribute the Apple Software in its entirety and
|
16 |
+
# without modifications, you must retain this notice and the following
|
17 |
+
# text and disclaimers in all such redistributions of the Apple Software.
|
18 |
+
# Neither the name, trademarks, service marks or logos of Apple Inc. may
|
19 |
+
# be used to endorse or promote products derived from the Apple Software
|
20 |
+
# without specific prior written permission from Apple. Except as
|
21 |
+
# expressly stated in this notice, no other rights or licenses, express or
|
22 |
+
# implied, are granted by Apple herein, including but not limited to any
|
23 |
+
# patent rights that may be infringed by your derivative works or by other
|
24 |
+
# works in which the Apple Software may be incorporated.
|
25 |
+
|
26 |
+
# The Apple Software is provided by Apple on an "AS IS" basis. APPLE
|
27 |
+
# MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
|
28 |
+
# THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS
|
29 |
+
# FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND
|
30 |
+
# OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
|
31 |
+
|
32 |
+
# IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL
|
33 |
+
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
34 |
+
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
35 |
+
# INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION,
|
36 |
+
# MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED
|
37 |
+
# AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE),
|
38 |
+
# STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE
|
39 |
+
# POSSIBILITY OF SUCH DAMAGE.
|
40 |
+
|
41 |
+
|
42 |
+
import torch
|
43 |
+
import torch.nn as nn
|
44 |
+
|
45 |
+
from transformers.models.distilbert import modeling_distilbert
|
46 |
+
from .configuration_distilbert_ane import DistilBertConfig
|
47 |
+
|
48 |
+
# Note: Original implementation of distilbert uses an epsilon value of 1e-12
|
49 |
+
# which is not friendly with the float16 precision that ANE uses by default
|
50 |
+
EPS = 1e-7
|
51 |
+
|
52 |
+
WARN_MSG_FOR_TRAINING_ATTEMPT = \
|
53 |
+
"This model is optimized for on-device execution only. " \
|
54 |
+
"Please use the original implementation from Hugging Face for training"
|
55 |
+
|
56 |
+
WARN_MSG_FOR_DICT_RETURN = \
|
57 |
+
"coremltools does not support dict outputs. Please set return_dict=False"
|
58 |
+
|
59 |
+
|
60 |
+
class LayerNormANE(nn.Module):
|
61 |
+
""" LayerNorm optimized for Apple Neural Engine (ANE) execution
|
62 |
+
|
63 |
+
Note: This layer only supports normalization over the final dim. It expects `num_channels`
|
64 |
+
as an argument and not `normalized_shape` which is used by `torch.nn.LayerNorm`.
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self,
|
68 |
+
num_channels,
|
69 |
+
clip_mag=None,
|
70 |
+
eps=1e-5,
|
71 |
+
elementwise_affine=True):
|
72 |
+
"""
|
73 |
+
Args:
|
74 |
+
num_channels: Number of channels (C) where the expected input data format is BC1S. S stands for sequence length.
|
75 |
+
clip_mag: Optional float value to use for clamping the input range before layer norm is applied.
|
76 |
+
If specified, helps reduce risk of overflow.
|
77 |
+
eps: Small value to avoid dividing by zero
|
78 |
+
elementwise_affine: If true, adds learnable channel-wise shift (bias) and scale (weight) parameters
|
79 |
+
"""
|
80 |
+
super().__init__()
|
81 |
+
# Principle 1: Picking the Right Data Format (machinelearning.apple.com/research/apple-neural-engine)
|
82 |
+
self.expected_rank = len('BC1S')
|
83 |
+
|
84 |
+
self.num_channels = num_channels
|
85 |
+
self.eps = eps
|
86 |
+
self.clip_mag = clip_mag
|
87 |
+
self.elementwise_affine = elementwise_affine
|
88 |
+
|
89 |
+
if self.elementwise_affine:
|
90 |
+
self.weight = nn.Parameter(torch.Tensor(num_channels))
|
91 |
+
self.bias = nn.Parameter(torch.Tensor(num_channels))
|
92 |
+
|
93 |
+
self._reset_parameters()
|
94 |
+
|
95 |
+
def _reset_parameters(self):
|
96 |
+
if self.elementwise_affine:
|
97 |
+
nn.init.ones_(self.weight)
|
98 |
+
nn.init.zeros_(self.bias)
|
99 |
+
|
100 |
+
def forward(self, inputs):
|
101 |
+
input_rank = len(inputs.size())
|
102 |
+
|
103 |
+
# Principle 1: Picking the Right Data Format (machinelearning.apple.com/research/apple-neural-engine)
|
104 |
+
# Migrate the data format from BSC to BC1S (most conducive to ANE)
|
105 |
+
if input_rank == 3 and inputs.size(2) == self.num_channels:
|
106 |
+
inputs = inputs.transpose(1, 2).unsqueeze(2)
|
107 |
+
input_rank = len(inputs.size())
|
108 |
+
|
109 |
+
assert input_rank == self.expected_rank
|
110 |
+
assert inputs.size(1) == self.num_channels
|
111 |
+
|
112 |
+
if self.clip_mag is not None:
|
113 |
+
inputs.clamp_(-self.clip_mag, self.clip_mag)
|
114 |
+
|
115 |
+
channels_mean = inputs.mean(dim=1, keepdims=True)
|
116 |
+
|
117 |
+
zero_mean = inputs - channels_mean
|
118 |
+
|
119 |
+
zero_mean_sq = zero_mean * zero_mean
|
120 |
+
|
121 |
+
denom = (zero_mean_sq.mean(dim=1, keepdims=True) + self.eps).rsqrt()
|
122 |
+
|
123 |
+
out = zero_mean * denom
|
124 |
+
|
125 |
+
if self.elementwise_affine:
|
126 |
+
out = (out + self.bias.view(1, self.num_channels, 1, 1)
|
127 |
+
) * self.weight.view(1, self.num_channels, 1, 1)
|
128 |
+
|
129 |
+
return out
|
130 |
+
|
131 |
+
|
132 |
+
class Embeddings(modeling_distilbert.Embeddings):
|
133 |
+
""" Embeddings module optimized for Apple Neural Engine
|
134 |
+
"""
|
135 |
+
|
136 |
+
def __init__(self, config):
|
137 |
+
super().__init__(config)
|
138 |
+
setattr(self, 'LayerNorm', LayerNormANE(config.dim, eps=EPS))
|
139 |
+
|
140 |
+
|
141 |
+
class MultiHeadSelfAttention(modeling_distilbert.MultiHeadSelfAttention):
|
142 |
+
""" MultiHeadSelfAttention module optimized for Apple Neural Engine
|
143 |
+
"""
|
144 |
+
|
145 |
+
def __init__(self, config):
|
146 |
+
super().__init__(config)
|
147 |
+
|
148 |
+
setattr(
|
149 |
+
self, 'q_lin',
|
150 |
+
nn.Conv2d(
|
151 |
+
in_channels=config.dim,
|
152 |
+
out_channels=config.dim,
|
153 |
+
kernel_size=1,
|
154 |
+
))
|
155 |
+
|
156 |
+
setattr(
|
157 |
+
self, 'k_lin',
|
158 |
+
nn.Conv2d(
|
159 |
+
in_channels=config.dim,
|
160 |
+
out_channels=config.dim,
|
161 |
+
kernel_size=1,
|
162 |
+
))
|
163 |
+
|
164 |
+
setattr(
|
165 |
+
self, 'v_lin',
|
166 |
+
nn.Conv2d(
|
167 |
+
in_channels=config.dim,
|
168 |
+
out_channels=config.dim,
|
169 |
+
kernel_size=1,
|
170 |
+
))
|
171 |
+
|
172 |
+
setattr(
|
173 |
+
self, 'out_lin',
|
174 |
+
nn.Conv2d(
|
175 |
+
in_channels=config.dim,
|
176 |
+
out_channels=config.dim,
|
177 |
+
kernel_size=1,
|
178 |
+
))
|
179 |
+
|
180 |
+
def prune_heads(self, heads):
|
181 |
+
raise NotImplementedError
|
182 |
+
|
183 |
+
def forward(self,
|
184 |
+
query,
|
185 |
+
key,
|
186 |
+
value,
|
187 |
+
mask,
|
188 |
+
head_mask=None,
|
189 |
+
output_attentions=False):
|
190 |
+
"""
|
191 |
+
Parameters:
|
192 |
+
query: torch.tensor(bs, dim, 1, seq_length)
|
193 |
+
key: torch.tensor(bs, dim, 1, seq_length)
|
194 |
+
value: torch.tensor(bs, dim, 1, seq_length)
|
195 |
+
mask: torch.tensor(bs, seq_length) or torch.tensor(bs, seq_length, 1, 1)
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
|
199 |
+
dim, 1, seq_length) Contextualized layer. Optional: only if `output_attentions=True`
|
200 |
+
"""
|
201 |
+
# Parse tensor shapes for source and target sequences
|
202 |
+
assert len(query.size()) == 4 and len(key.size()) == 4 and len(
|
203 |
+
value.size()) == 4
|
204 |
+
|
205 |
+
bs, dim, dummy, seqlen = query.size()
|
206 |
+
# assert seqlen == key.size(3) and seqlen == value.size(3)
|
207 |
+
# assert dim == self.dim
|
208 |
+
# assert dummy == 1
|
209 |
+
|
210 |
+
# Project q, k and v
|
211 |
+
q = self.q_lin(query)
|
212 |
+
k = self.k_lin(key)
|
213 |
+
v = self.v_lin(value)
|
214 |
+
|
215 |
+
# Validate mask
|
216 |
+
if mask is not None:
|
217 |
+
expected_mask_shape = [bs, seqlen, 1, 1]
|
218 |
+
if mask.dtype == torch.bool:
|
219 |
+
mask = mask.logical_not().float() * -1e4
|
220 |
+
elif mask.dtype == torch.int64:
|
221 |
+
mask = (1 - mask).float() * -1e4
|
222 |
+
elif mask.dtype != torch.float32:
|
223 |
+
raise TypeError(f"Unexpected dtype for mask: {mask.dtype}")
|
224 |
+
|
225 |
+
if len(mask.size()) == 2:
|
226 |
+
mask = mask.unsqueeze(2).unsqueeze(2)
|
227 |
+
|
228 |
+
if list(mask.size()) != expected_mask_shape:
|
229 |
+
raise RuntimeError(
|
230 |
+
f"Invalid shape for `mask` (Expected {expected_mask_shape}, got {list(mask.size())}"
|
231 |
+
)
|
232 |
+
|
233 |
+
if head_mask is not None:
|
234 |
+
raise NotImplementedError
|
235 |
+
|
236 |
+
# Compute scaled dot-product attention
|
237 |
+
dim_per_head = self.dim // self.n_heads
|
238 |
+
mh_q = q.split(
|
239 |
+
dim_per_head,
|
240 |
+
dim=1) # (bs, dim_per_head, 1, max_seq_length) * n_heads
|
241 |
+
mh_k = k.transpose(1, 3).split(
|
242 |
+
dim_per_head,
|
243 |
+
dim=3) # (bs, max_seq_length, 1, dim_per_head) * n_heads
|
244 |
+
mh_v = v.split(
|
245 |
+
dim_per_head,
|
246 |
+
dim=1) # (bs, dim_per_head, 1, max_seq_length) * n_heads
|
247 |
+
|
248 |
+
normalize_factor = float(dim_per_head)**-0.5
|
249 |
+
attn_weights = [
|
250 |
+
torch.einsum('bchq,bkhc->bkhq', [qi, ki]) * normalize_factor
|
251 |
+
for qi, ki in zip(mh_q, mh_k)
|
252 |
+
] # (bs, max_seq_length, 1, max_seq_length) * n_heads
|
253 |
+
|
254 |
+
if mask is not None:
|
255 |
+
for head_idx in range(self.n_heads):
|
256 |
+
attn_weights[head_idx] = attn_weights[head_idx] + mask
|
257 |
+
|
258 |
+
attn_weights = [aw.softmax(dim=1) for aw in attn_weights
|
259 |
+
] # (bs, max_seq_length, 1, max_seq_length) * n_heads
|
260 |
+
attn = [
|
261 |
+
torch.einsum('bkhq,bchk->bchq', wi, vi)
|
262 |
+
for wi, vi in zip(attn_weights, mh_v)
|
263 |
+
] # (bs, dim_per_head, 1, max_seq_length) * n_heads
|
264 |
+
|
265 |
+
attn = torch.cat(attn, dim=1) # (bs, dim, 1, max_seq_length)
|
266 |
+
|
267 |
+
attn = self.out_lin(attn)
|
268 |
+
|
269 |
+
if output_attentions:
|
270 |
+
return attn, attn_weights.cat(dim=2)
|
271 |
+
else:
|
272 |
+
return (attn, )
|
273 |
+
|
274 |
+
|
275 |
+
class FFN(modeling_distilbert.FFN):
|
276 |
+
""" FFN module optimized for Apple Neural Engine
|
277 |
+
"""
|
278 |
+
|
279 |
+
def __init__(self, config):
|
280 |
+
super().__init__(config)
|
281 |
+
self.seq_len_dim = 3
|
282 |
+
|
283 |
+
setattr(
|
284 |
+
self, 'lin1',
|
285 |
+
nn.Conv2d(
|
286 |
+
in_channels=config.dim,
|
287 |
+
out_channels=config.hidden_dim,
|
288 |
+
kernel_size=1,
|
289 |
+
))
|
290 |
+
|
291 |
+
setattr(
|
292 |
+
self, 'lin2',
|
293 |
+
nn.Conv2d(
|
294 |
+
in_channels=config.hidden_dim,
|
295 |
+
out_channels=config.dim,
|
296 |
+
kernel_size=1,
|
297 |
+
))
|
298 |
+
|
299 |
+
|
300 |
+
class TransformerBlock(modeling_distilbert.TransformerBlock):
|
301 |
+
|
302 |
+
def __init__(self, config):
|
303 |
+
super().__init__(config)
|
304 |
+
setattr(self, 'attention', MultiHeadSelfAttention(config))
|
305 |
+
setattr(self, 'sa_layer_norm', LayerNormANE(config.dim, eps=EPS))
|
306 |
+
setattr(self, 'ffn', FFN(config))
|
307 |
+
setattr(self, 'output_layer_norm', LayerNormANE(config.dim, eps=EPS))
|
308 |
+
|
309 |
+
|
310 |
+
class Transformer(modeling_distilbert.Transformer):
|
311 |
+
|
312 |
+
def __init__(self, config):
|
313 |
+
super().__init__(config)
|
314 |
+
setattr(
|
315 |
+
self, 'layer',
|
316 |
+
nn.ModuleList(
|
317 |
+
[TransformerBlock(config) for _ in range(config.n_layers)]))
|
318 |
+
|
319 |
+
|
320 |
+
class DistilBertModel(modeling_distilbert.DistilBertModel):
|
321 |
+
config_class = DistilBertConfig
|
322 |
+
|
323 |
+
def __init__(self, config):
|
324 |
+
super().__init__(config)
|
325 |
+
setattr(self, 'embeddings', Embeddings(config))
|
326 |
+
setattr(self, 'transformer', Transformer(config))
|
327 |
+
|
328 |
+
# Register hook for unsqueezing nn.Linear parameters to match nn.Conv2d parameter spec
|
329 |
+
self._register_load_state_dict_pre_hook(linear_to_conv2d_map)
|
330 |
+
|
331 |
+
def _prune_heads(self, heads_to_prune):
|
332 |
+
raise NotImplementedError
|
333 |
+
|
334 |
+
|
335 |
+
class DistilBertForMaskedLM(modeling_distilbert.DistilBertForMaskedLM):
|
336 |
+
config_class = DistilBertConfig
|
337 |
+
|
338 |
+
def __init__(self, config):
|
339 |
+
super().__init__(config)
|
340 |
+
from transformers.activations import get_activation
|
341 |
+
setattr(self, 'activation', get_activation(config.activation))
|
342 |
+
setattr(self, 'distilbert', DistilBertModel(config))
|
343 |
+
setattr(self, 'vocab_transform', nn.Conv2d(config.dim, config.dim, 1))
|
344 |
+
setattr(self, 'vocab_layer_norm', LayerNormANE(config.dim, eps=EPS))
|
345 |
+
setattr(self, 'vocab_projector',
|
346 |
+
nn.Conv2d(config.dim, config.vocab_size, 1))
|
347 |
+
|
348 |
+
def forward(
|
349 |
+
self,
|
350 |
+
input_ids=None,
|
351 |
+
attention_mask=None,
|
352 |
+
head_mask=None,
|
353 |
+
inputs_embeds=None,
|
354 |
+
labels=None,
|
355 |
+
output_attentions=None,
|
356 |
+
output_hidden_states=None,
|
357 |
+
return_dict=None,
|
358 |
+
):
|
359 |
+
if self.training or labels is not None:
|
360 |
+
raise ValueError(WARN_MSG_FOR_TRAINING_ATTEMPT)
|
361 |
+
|
362 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
363 |
+
if return_dict:
|
364 |
+
raise ValueError(WARN_MSG_FOR_DICT_RETURN)
|
365 |
+
|
366 |
+
dlbrt_output = self.distilbert(
|
367 |
+
input_ids=input_ids,
|
368 |
+
attention_mask=attention_mask,
|
369 |
+
head_mask=head_mask,
|
370 |
+
inputs_embeds=inputs_embeds,
|
371 |
+
output_attentions=output_attentions,
|
372 |
+
output_hidden_states=output_hidden_states,
|
373 |
+
return_dict=False,
|
374 |
+
)
|
375 |
+
hidden_states = dlbrt_output[0] # (bs, dim, 1, seq_len)
|
376 |
+
prediction_logits = self.vocab_transform(
|
377 |
+
hidden_states) # (bs, dim, 1, seq_len)
|
378 |
+
prediction_logits = self.activation(
|
379 |
+
prediction_logits) # (bs, dim, 1, seq_len)
|
380 |
+
prediction_logits = self.vocab_layer_norm(
|
381 |
+
prediction_logits) # (bs, dim, 1, seq_len)
|
382 |
+
prediction_logits = self.vocab_projector(
|
383 |
+
prediction_logits) # (bs, dim, 1, seq_len)
|
384 |
+
prediction_logits = prediction_logits.squeeze(-1).squeeze(
|
385 |
+
-1) # (bs, dim)
|
386 |
+
|
387 |
+
output = (prediction_logits, ) + dlbrt_output[1:]
|
388 |
+
mlm_loss = None
|
389 |
+
|
390 |
+
return ((mlm_loss, ) + output) if mlm_loss is not None else output
|
391 |
+
|
392 |
+
|
393 |
+
class DistilBertForSequenceClassification(
|
394 |
+
modeling_distilbert.DistilBertForSequenceClassification):
|
395 |
+
config_class = DistilBertConfig
|
396 |
+
|
397 |
+
def __init__(self, config):
|
398 |
+
super().__init__(config)
|
399 |
+
setattr(self, 'distilbert', DistilBertModel(config))
|
400 |
+
setattr(self, 'pre_classifier', nn.Conv2d(config.dim, config.dim, 1))
|
401 |
+
setattr(self, 'classifier', nn.Conv2d(config.dim, config.num_labels,
|
402 |
+
1))
|
403 |
+
|
404 |
+
def forward(
|
405 |
+
self,
|
406 |
+
input_ids=None,
|
407 |
+
attention_mask=None,
|
408 |
+
head_mask=None,
|
409 |
+
inputs_embeds=None,
|
410 |
+
labels=None,
|
411 |
+
output_attentions=None,
|
412 |
+
output_hidden_states=None,
|
413 |
+
return_dict=None,
|
414 |
+
):
|
415 |
+
if labels is not None or self.training:
|
416 |
+
raise NotImplementedError(WARN_MSG_FOR_TRAINING_ATTEMPT)
|
417 |
+
|
418 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
419 |
+
if return_dict:
|
420 |
+
raise ValueError(WARN_MSG_FOR_DICT_RETURN)
|
421 |
+
|
422 |
+
distilbert_output = self.distilbert(
|
423 |
+
input_ids=input_ids,
|
424 |
+
attention_mask=attention_mask,
|
425 |
+
head_mask=head_mask,
|
426 |
+
inputs_embeds=inputs_embeds,
|
427 |
+
output_attentions=output_attentions,
|
428 |
+
output_hidden_states=output_hidden_states,
|
429 |
+
return_dict=False,
|
430 |
+
)
|
431 |
+
hidden_state = distilbert_output[0] # (bs, dim, 1, seq_len)
|
432 |
+
pooled_output = hidden_state[:, :, :, 0:1] # (bs, dim, 1, 1)
|
433 |
+
pooled_output = self.pre_classifier(pooled_output) # (bs, dim, 1, 1)
|
434 |
+
pooled_output = nn.ReLU()(pooled_output) # (bs, dim, 1, 1)
|
435 |
+
logits = self.classifier(pooled_output) # (bs, num_labels, 1, 1)
|
436 |
+
logits = logits.squeeze(-1).squeeze(-1) # (bs, num_labels)
|
437 |
+
|
438 |
+
output = (logits, ) + distilbert_output[1:]
|
439 |
+
loss = None
|
440 |
+
|
441 |
+
return ((loss, ) + output) if loss is not None else output
|
442 |
+
|
443 |
+
|
444 |
+
class DistilBertForQuestionAnswering(
|
445 |
+
modeling_distilbert.DistilBertForQuestionAnswering):
|
446 |
+
config_class = DistilBertConfig
|
447 |
+
|
448 |
+
def __init__(self, config):
|
449 |
+
super().__init__(config)
|
450 |
+
setattr(self, 'distilbert', DistilBertModel(config))
|
451 |
+
setattr(self, 'qa_outputs', nn.Conv2d(config.dim, config.num_labels,
|
452 |
+
1))
|
453 |
+
|
454 |
+
def forward(
|
455 |
+
self,
|
456 |
+
input_ids=None,
|
457 |
+
attention_mask=None,
|
458 |
+
head_mask=None,
|
459 |
+
inputs_embeds=None,
|
460 |
+
start_positions=None,
|
461 |
+
end_positions=None,
|
462 |
+
output_attentions=None,
|
463 |
+
output_hidden_states=None,
|
464 |
+
return_dict=None,
|
465 |
+
):
|
466 |
+
|
467 |
+
if self.training or start_positions is not None or end_positions is not None:
|
468 |
+
raise ValueError(WARN_MSG_FOR_TRAINING_ATTEMPT)
|
469 |
+
|
470 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
471 |
+
if return_dict:
|
472 |
+
raise ValueError(WARN_MSG_FOR_DICT_RETURN)
|
473 |
+
|
474 |
+
distilbert_output = self.distilbert(
|
475 |
+
input_ids=input_ids,
|
476 |
+
attention_mask=attention_mask,
|
477 |
+
head_mask=head_mask,
|
478 |
+
inputs_embeds=inputs_embeds,
|
479 |
+
output_attentions=output_attentions,
|
480 |
+
output_hidden_states=output_hidden_states,
|
481 |
+
return_dict=False,
|
482 |
+
)
|
483 |
+
hidden_states = distilbert_output[0] # (bs, dim, 1, max_query_len)
|
484 |
+
|
485 |
+
hidden_states = self.dropout(
|
486 |
+
hidden_states) # (bs, dim, 1, max_query_len)
|
487 |
+
logits = self.qa_outputs(hidden_states) # (bs, 2, 1, max_query_len)
|
488 |
+
start_logits, end_logits = logits.split(
|
489 |
+
1, dim=1) # (bs, 1, 1, max_query_len) * 2
|
490 |
+
start_logits = start_logits.squeeze().contiguous(
|
491 |
+
) # (bs, max_query_len)
|
492 |
+
end_logits = end_logits.squeeze().contiguous() # (bs, max_query_len)
|
493 |
+
|
494 |
+
output = (start_logits, end_logits) + distilbert_output[1:]
|
495 |
+
total_loss = None
|
496 |
+
|
497 |
+
return ((total_loss, ) + output) if total_loss is not None else output
|
498 |
+
|
499 |
+
|
500 |
+
class DistilBertForTokenClassification(
|
501 |
+
modeling_distilbert.DistilBertForTokenClassification):
|
502 |
+
|
503 |
+
def __init__(self, config):
|
504 |
+
super().__init__(config)
|
505 |
+
setattr(self, 'distilbert', DistilBertModel(config))
|
506 |
+
setattr(self, 'classifier',
|
507 |
+
nn.Conv2d(config.hidden_size, config.num_labels, 1))
|
508 |
+
|
509 |
+
def forward(
|
510 |
+
self,
|
511 |
+
input_ids=None,
|
512 |
+
attention_mask=None,
|
513 |
+
head_mask=None,
|
514 |
+
inputs_embeds=None,
|
515 |
+
labels=None,
|
516 |
+
output_attentions=None,
|
517 |
+
output_hidden_states=None,
|
518 |
+
return_dict=None,
|
519 |
+
):
|
520 |
+
if self.training or labels is not None:
|
521 |
+
raise ValueError(WARN_MSG_FOR_TRAINING_ATTEMPT)
|
522 |
+
|
523 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
524 |
+
if return_dict:
|
525 |
+
raise ValueError(WARN_MSG_FOR_DICT_RETURN)
|
526 |
+
|
527 |
+
outputs = self.distilbert(
|
528 |
+
input_ids,
|
529 |
+
attention_mask=attention_mask,
|
530 |
+
head_mask=head_mask,
|
531 |
+
inputs_embeds=inputs_embeds,
|
532 |
+
output_attentions=output_attentions,
|
533 |
+
output_hidden_states=output_hidden_states,
|
534 |
+
return_dict=False,
|
535 |
+
)
|
536 |
+
|
537 |
+
sequence_output = outputs[0] # (bs, dim, 1, seq_len)
|
538 |
+
logits = self.classifier(
|
539 |
+
sequence_output) # (bs, num_labels, 1, seq_len)
|
540 |
+
logits = logits.squeeze(2).transpose(1, 2) # (bs, seq_len, num_labels)
|
541 |
+
|
542 |
+
output = (logits, ) + outputs[1:]
|
543 |
+
loss = None
|
544 |
+
return ((loss, ) + output) if loss is not None else output
|
545 |
+
|
546 |
+
|
547 |
+
class DistilBertForMultipleChoice(
|
548 |
+
modeling_distilbert.DistilBertForMultipleChoice):
|
549 |
+
config_class = DistilBertConfig
|
550 |
+
|
551 |
+
def __init__(self, config):
|
552 |
+
super().__init__(config)
|
553 |
+
setattr(self, 'distilbert', DistilBertModel(config))
|
554 |
+
setattr(self, 'pre_classifier', nn.Conv2d(config.dim, config.dim, 1))
|
555 |
+
setattr(self, 'classifier', nn.Conv2d(config.dim, 1, 1))
|
556 |
+
|
557 |
+
def forward(
|
558 |
+
self,
|
559 |
+
input_ids=None,
|
560 |
+
attention_mask=None,
|
561 |
+
head_mask=None,
|
562 |
+
inputs_embeds=None,
|
563 |
+
labels=None,
|
564 |
+
output_attentions=None,
|
565 |
+
output_hidden_states=None,
|
566 |
+
return_dict=None,
|
567 |
+
):
|
568 |
+
if self.training or labels is not None:
|
569 |
+
raise ValueError(WARN_MSG_FOR_TRAINING_ATTEMPT)
|
570 |
+
|
571 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
572 |
+
if return_dict:
|
573 |
+
raise ValueError(WARN_MSG_FOR_DICT_RETURN)
|
574 |
+
|
575 |
+
num_choices = input_ids.shape[
|
576 |
+
1] if input_ids is not None else inputs_embeds.shape[1]
|
577 |
+
|
578 |
+
input_ids = input_ids.view(
|
579 |
+
-1, input_ids.size(-1)) if input_ids is not None else None
|
580 |
+
attention_mask = attention_mask.view(
|
581 |
+
-1,
|
582 |
+
attention_mask.size(-1)) if attention_mask is not None else None
|
583 |
+
inputs_embeds = (inputs_embeds.view(-1, inputs_embeds.size(-2),
|
584 |
+
inputs_embeds.size(-1))
|
585 |
+
if inputs_embeds is not None else None)
|
586 |
+
|
587 |
+
outputs = self.distilbert(
|
588 |
+
input_ids,
|
589 |
+
attention_mask=attention_mask,
|
590 |
+
head_mask=head_mask,
|
591 |
+
inputs_embeds=inputs_embeds,
|
592 |
+
output_attentions=output_attentions,
|
593 |
+
output_hidden_states=output_hidden_states,
|
594 |
+
return_dict=False,
|
595 |
+
)
|
596 |
+
|
597 |
+
hidden_state = outputs[0] # (bs * num_choices, dim, 1, seq_len)
|
598 |
+
pooled_output = hidden_state[:, :, :,
|
599 |
+
0:1] # (bs * num_choices, dim, 1, 1)
|
600 |
+
pooled_output = self.pre_classifier(
|
601 |
+
pooled_output) # (bs * num_choices, dim, 1, 1)
|
602 |
+
pooled_output = nn.ReLU()(
|
603 |
+
pooled_output) # (bs * num_choices, dim, 1, 1)
|
604 |
+
logits = self.classifier(pooled_output) # (bs * num_choices, 1, 1, 1)
|
605 |
+
logits = logits.squeeze() # (bs * num_choices)
|
606 |
+
|
607 |
+
reshaped_logits = logits.view(-1, num_choices) # (bs, num_choices)
|
608 |
+
|
609 |
+
output = (reshaped_logits, ) + outputs[1:]
|
610 |
+
loss = None
|
611 |
+
|
612 |
+
return ((loss, ) + output) if loss is not None else output
|
613 |
+
|
614 |
+
|
615 |
+
def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict,
|
616 |
+
missing_keys, unexpected_keys, error_msgs):
|
617 |
+
""" Unsqueeze twice to map nn.Linear weights to nn.Conv2d weights
|
618 |
+
"""
|
619 |
+
for k in state_dict:
|
620 |
+
is_internal_proj = all(substr in k for substr in ['lin', '.weight'])
|
621 |
+
is_output_proj = all(substr in k
|
622 |
+
for substr in ['classifier', '.weight'])
|
623 |
+
if is_internal_proj or is_output_proj:
|
624 |
+
if len(state_dict[k].shape) == 2:
|
625 |
+
state_dict[k] = state_dict[k][:, :, None, None]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1200fcc3f752c222525b7740abcd87f3aa26a12cd5d5589cf32763458eb9958
|
3 |
+
size 267853297
|