mathy-vicuna-13B-FFT / Aug11_01-11-56_watgpu-100.cmd
w32zhong's picture
Upload training commands.
fe739fd
[2023-08-11 01:11:49,924] [INFO] [runner.py:555:main] cmd = /home/w32zhong/anaconda3/envs/llamax/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbNCwgNSwgNiwgN119 --master_addr=127.0.0.1 --master_port=8921 --enable_each_rank_log=None train.py --model_name_or_path lmsys/vicuna-13b-v1.5 --data_file ./data/finetune-pairs.json --debug_single_layer False --dryrun False --use_lora False --ctx_length 2048 --datamap_nprocs 10 --use_flash_att2 True --load_8bit False --num_train_epochs 3 --output_dir ./output --save_strategy steps --save_steps 100 --save_total_limit 2 --logging_steps 1 --report_to tensorboard --per_device_train_batch_size 1 --gradient_accumulation_steps 12 --max_grad_norm 1.0 --learning_rate 2e-5 --warmup_ratio 0.03 --fp16 False --bf16 True --deepspeed /tmp/tmp5ncfkvzc
[2023-08-11 01:11:51,958] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect)
===================================BUG REPORT===================================
Welcome to bitsandbytes. For bug reports, please run
python -m bitsandbytes
and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues
================================================================================
CUDA SETUP: CUDA runtime path found: /home/w32zhong/anaconda3/envs/llamax/lib/libcudart.so
CUDA SETUP: Highest compute capability among GPUs detected: 8.9
CUDA SETUP: Detected CUDA version 121
CUDA SETUP: Loading binary /home/w32zhong/anaconda3/envs/llamax/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...
[2023-08-11 01:11:53,118] [INFO] [launch.py:138:main] 0 NCCL_P2P_DISABLE=1
[2023-08-11 01:11:53,118] [INFO] [launch.py:138:main] 0 NCCL_DEBUG=INFO
[2023-08-11 01:11:53,118] [INFO] [launch.py:138:main] 0 NCCL_IB_DISABLE=1
[2023-08-11 01:11:53,118] [INFO] [launch.py:138:main] 0 NCCL_BLOCKING_WAIT=1
[2023-08-11 01:11:53,118] [INFO] [launch.py:145:main] WORLD INFO DICT: {'localhost': [4, 5, 6, 7]}
[2023-08-11 01:11:53,118] [INFO] [launch.py:151:main] nnodes=1, num_local_procs=4, node_rank=0
[2023-08-11 01:11:53,118] [INFO] [launch.py:162:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1, 2, 3]})
[2023-08-11 01:11:53,118] [INFO] [launch.py:163:main] dist_world_size=4
[2023-08-11 01:11:53,118] [INFO] [launch.py:165:main] Setting CUDA_VISIBLE_DEVICES=4,5,6,7
[2023-08-11 01:11:55,214] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-08-11 01:11:55,257] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-08-11 01:11:55,260] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-08-11 01:11:55,265] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect)
===================================BUG REPORT===================================
Welcome to bitsandbytes. For bug reports, please run
python -m bitsandbytes
and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues
================================================================================
CUDA SETUP: CUDA runtime path found: /home/w32zhong/anaconda3/envs/llamax/lib/libcudart.so
CUDA SETUP: Highest compute capability among GPUs detected: 8.9
CUDA SETUP: Detected CUDA version 121
CUDA SETUP: Loading binary /home/w32zhong/anaconda3/envs/llamax/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...
===================================BUG REPORT===================================
Welcome to bitsandbytes. For bug reports, please run
python -m bitsandbytes
and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues
================================================================================
CUDA SETUP: CUDA runtime path found: /home/w32zhong/anaconda3/envs/llamax/lib/libcudart.so
CUDA SETUP: Highest compute capability among GPUs detected: 8.9
CUDA SETUP: Detected CUDA version 121
CUDA SETUP: Loading binary /home/w32zhong/anaconda3/envs/llamax/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...
===================================BUG REPORT===================================
Welcome to bitsandbytes. For bug reports, please run
python -m bitsandbytes
and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues
================================================================================
CUDA SETUP: CUDA runtime path found: /home/w32zhong/anaconda3/envs/llamax/lib/libcudart.so
CUDA SETUP: Highest compute capability among GPUs detected: 8.9
CUDA SETUP: Detected CUDA version 121
CUDA SETUP: Loading binary /home/w32zhong/anaconda3/envs/llamax/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...
===================================BUG REPORT===================================
Welcome to bitsandbytes. For bug reports, please run
python -m bitsandbytes
and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues
================================================================================
CUDA SETUP: CUDA runtime path found: /home/w32zhong/anaconda3/envs/llamax/lib/libcudart.so
CUDA SETUP: Highest compute capability among GPUs detected: 8.9
CUDA SETUP: Detected CUDA version 121
CUDA SETUP: Loading binary /home/w32zhong/anaconda3/envs/llamax/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...
[2023-08-11 01:11:56,439] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2023-08-11 01:11:56,439] [INFO] [comm.py:616:init_distributed] cdb=None
[2023-08-11 01:11:56,439] [INFO] [comm.py:643:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
[2023-08-11 01:11:56,544] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2023-08-11 01:11:56,544] [INFO] [comm.py:616:init_distributed] cdb=None
[2023-08-11 01:11:56,607] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2023-08-11 01:11:56,607] [INFO] [comm.py:616:init_distributed] cdb=None
[2023-08-11 01:11:56,608] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2023-08-11 01:11:56,609] [INFO] [comm.py:616:init_distributed] cdb=None
MyArguments(model_name_or_path='lmsys/vicuna-13b-v1.5', data_file='./data/finetune-pairs.json', dryrun=False, ctx_length=2048, datamap_nprocs=10, use_flash_att2=True, use_lora=False, load_8bit=False, cache_dir=None, specified_tokenizer=None, debug_single_layer=False)
TrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=True,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=/tmp/tmp5ncfkvzc,
disable_tqdm=False,
do_eval=False,
do_predict=False,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'fsdp_min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=12,
gradient_checkpointing=False,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=2e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=./output/runs/Aug11_01-11-56_watgpu-100,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=1.0,
logging_strategy=steps,
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_hf,
optim_args=None,
output_dir=./output,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=1,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
resume_from_checkpoint=None,
run_name=./output,
save_on_each_node=False,
save_safetensors=False,
save_steps=100,
save_strategy=steps,
save_total_limit=2,
seed=42,
sharded_ddp=[],
skip_memory_metrics=True,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.03,
warmup_steps=0,
weight_decay=0.0,
xpu_backend=None,
)
{
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1000000000.0,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1000000000.0,
"stage3_max_reuse_distance": 1000000000.0,
"stage3_gather_16bit_weights_on_model_save": true
},
"optimizer": {
"type": "AdamW",
"params": {
"betas": [
0.9,
0.999
],
"eps": 1e-08,
"weight_decay": 0.0
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 2e-05,
"warmup_num_steps": "auto",
"warmup_type": "linear"
}
},
"fp16": {
"enabled": false,
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": true
},
"gradient_accumulation_steps": 12,
"train_micro_batch_size_per_gpu": 1,
"train_batch_size": 48,
"gradient_clipping": 1.0,
"steps_per_print": Infinity,
"wall_clock_breakdown": false
}