--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.53125 --- # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2368 - Accuracy: 0.5312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 1.2726 | 0.575 | | No log | 2.0 | 10 | 1.3480 | 0.5062 | | No log | 3.0 | 15 | 1.2696 | 0.5375 | | No log | 4.0 | 20 | 1.2715 | 0.5312 | | No log | 5.0 | 25 | 1.2360 | 0.5687 | | No log | 6.0 | 30 | 1.2728 | 0.5125 | | No log | 7.0 | 35 | 1.2374 | 0.525 | | No log | 8.0 | 40 | 1.2484 | 0.5437 | | No log | 9.0 | 45 | 1.2336 | 0.5563 | | No log | 10.0 | 50 | 1.2128 | 0.6 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3