File size: 2,921 Bytes
10fe324 bf6aace 227ec3d bf6aace 10fe324 efbb324 10fe324 4d30e99 48c1923 227ec3d 9827ad5 35b834b bcac24a 6cbba15 c25c0f8 3ea2da1 0199b60 ff7a086 7696f9d 444153b 3160af2 6b21519 6e80a52 047def8 d26d2e9 9fd36b5 f28f467 612ab60 c333605 bf6aace 10fe324 efbb324 10fe324 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: apwic/indobert-base-uncased-finetuned-nergrit
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# apwic/indobert-base-uncased-finetuned-nergrit
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1161
- Validation Loss: 0.1784
- Train Accuracy: 0.9483
- Epoch: 22
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2352, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.4507 | 0.1933 | 0.9437 | 0 |
| 0.1708 | 0.1795 | 0.9471 | 1 |
| 0.1295 | 0.1784 | 0.9483 | 2 |
| 0.1169 | 0.1784 | 0.9483 | 3 |
| 0.1172 | 0.1784 | 0.9483 | 4 |
| 0.1180 | 0.1784 | 0.9483 | 5 |
| 0.1176 | 0.1784 | 0.9483 | 6 |
| 0.1172 | 0.1784 | 0.9483 | 7 |
| 0.1168 | 0.1784 | 0.9483 | 8 |
| 0.1174 | 0.1784 | 0.9483 | 9 |
| 0.1174 | 0.1784 | 0.9483 | 10 |
| 0.1178 | 0.1784 | 0.9483 | 11 |
| 0.1175 | 0.1784 | 0.9483 | 12 |
| 0.1175 | 0.1784 | 0.9483 | 13 |
| 0.1179 | 0.1784 | 0.9483 | 14 |
| 0.1176 | 0.1784 | 0.9483 | 15 |
| 0.1165 | 0.1784 | 0.9483 | 16 |
| 0.1179 | 0.1784 | 0.9483 | 17 |
| 0.1169 | 0.1784 | 0.9483 | 18 |
| 0.1170 | 0.1784 | 0.9483 | 19 |
| 0.1175 | 0.1784 | 0.9483 | 20 |
| 0.1177 | 0.1784 | 0.9483 | 21 |
| 0.1161 | 0.1784 | 0.9483 | 22 |
### Framework versions
- Transformers 4.33.0
- TensorFlow 2.12.0
- Datasets 2.14.6
- Tokenizers 0.13.3
|