Model save
Browse files
README.md
CHANGED
@@ -17,12 +17,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Rouge1:
|
22 |
-
- Rouge2:
|
23 |
-
- Rougel: 68.
|
24 |
-
- Rougelsum:
|
25 |
-
- Gen Len:
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -42,8 +42,8 @@ More information needed
|
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
- learning_rate: 0.001
|
45 |
-
- train_batch_size:
|
46 |
-
- eval_batch_size:
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
@@ -51,18 +51,18 @@ The following hyperparameters were used during training:
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step
|
55 |
-
|
56 |
-
| 1.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
- Transformers 4.40.2
|
66 |
-
- Pytorch 2.3.
|
67 |
-
- Datasets 2.
|
68 |
- Tokenizers 0.19.1
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7478
|
21 |
+
- Rouge1: 72.0587
|
22 |
+
- Rouge2: 64.7973
|
23 |
+
- Rougel: 68.9279
|
24 |
+
- Rougelsum: 71.3028
|
25 |
+
- Gen Len: 99.3765
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
- learning_rate: 0.001
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 32
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
|
56 |
+
| 1.1904 | 1.0 | 892 | 0.8053 | 65.8257 | 57.6167 | 62.6222 | 65.0027 | 95.8598 |
|
57 |
+
| 0.6851 | 2.0 | 1784 | 0.6779 | 67.8889 | 60.0878 | 64.5868 | 66.9914 | 96.2911 |
|
58 |
+
| 0.4856 | 3.0 | 2676 | 0.6460 | 70.9241 | 63.6363 | 67.8555 | 70.153 | 96.9212 |
|
59 |
+
| 0.3358 | 4.0 | 3568 | 0.6565 | 69.9002 | 62.4 | 66.5928 | 69.0347 | 101.8745 |
|
60 |
+
| 0.1973 | 5.0 | 4460 | 0.7478 | 72.0587 | 64.7973 | 68.9279 | 71.3028 | 99.3765 |
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
- Transformers 4.40.2
|
66 |
+
- Pytorch 2.3.1+cu121
|
67 |
+
- Datasets 2.20.0
|
68 |
- Tokenizers 0.19.1
|