File size: 2,011 Bytes
2198e4c
63031de
 
2198e4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20efe79
63031de
 
 
 
 
2198e4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20efe79
 
 
 
 
2198e4c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
language:
- id
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: indosum-lora-0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indosum-lora-0

This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4876
- Rouge1: 73.5772
- Rouge2: 66.7059
- Rougel: 70.6615
- Rougelsum: 72.7397
- Gen Len: 102.9213

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 0.7749        | 1.0   | 892  | 0.5290          | 71.3679 | 64.0441 | 68.2584 | 70.462    | 103.084  |
| 0.5963        | 2.0   | 1784 | 0.5043          | 71.9204 | 64.8766 | 68.9265 | 71.053    | 105.9827 |
| 0.5524        | 3.0   | 2676 | 0.4928          | 72.0196 | 65.0022 | 69.1173 | 71.1808   | 103.2227 |
| 0.5236        | 4.0   | 3568 | 0.4948          | 72.454  | 65.5465 | 69.6508 | 71.6454   | 105.364  |
| 0.5017        | 5.0   | 4460 | 0.4876          | 73.194  | 66.308  | 70.335  | 72.3629   | 102.86   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1