File size: 2,011 Bytes
2198e4c 63031de 2198e4c 20efe79 63031de 2198e4c 20efe79 2198e4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
language:
- id
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: indosum-lora-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indosum-lora-0
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4876
- Rouge1: 73.5772
- Rouge2: 66.7059
- Rougel: 70.6615
- Rougelsum: 72.7397
- Gen Len: 102.9213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 0.7749 | 1.0 | 892 | 0.5290 | 71.3679 | 64.0441 | 68.2584 | 70.462 | 103.084 |
| 0.5963 | 2.0 | 1784 | 0.5043 | 71.9204 | 64.8766 | 68.9265 | 71.053 | 105.9827 |
| 0.5524 | 3.0 | 2676 | 0.4928 | 72.0196 | 65.0022 | 69.1173 | 71.1808 | 103.2227 |
| 0.5236 | 4.0 | 3568 | 0.4948 | 72.454 | 65.5465 | 69.6508 | 71.6454 | 105.364 |
| 0.5017 | 5.0 | 4460 | 0.4876 | 73.194 | 66.308 | 70.335 | 72.3629 | 102.86 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|