End of training
Browse files- README.md +23 -8
- all_results.json +29 -0
- eval_results.json +13 -0
- generated_predictions.txt +0 -0
- predict_results.json +12 -0
- train_results.json +9 -0
- trainer_state.json +130 -0
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: LazarusNLP/IndoNanoT5-base
|
4 |
tags:
|
@@ -9,7 +11,20 @@ metrics:
|
|
9 |
- rouge
|
10 |
model-index:
|
11 |
- name: liputan6-lora-16
|
12 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# liputan6-lora-16
|
19 |
|
20 |
-
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 2.
|
23 |
-
- Rouge1: 28.
|
24 |
-
- Rouge2: 12.
|
25 |
-
- Rougel:
|
26 |
-
- Rougelsum:
|
27 |
-
- Gen Len:
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
license: apache-2.0
|
5 |
base_model: LazarusNLP/IndoNanoT5-base
|
6 |
tags:
|
|
|
11 |
- rouge
|
12 |
model-index:
|
13 |
- name: liputan6-lora-16
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Summarization
|
17 |
+
type: summarization
|
18 |
+
dataset:
|
19 |
+
name: id_liputan6 canonical
|
20 |
+
type: id_liputan6
|
21 |
+
config: canonical
|
22 |
+
split: validation
|
23 |
+
args: canonical
|
24 |
+
metrics:
|
25 |
+
- name: Rouge1
|
26 |
+
type: rouge
|
27 |
+
value: 28.4262
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
# liputan6-lora-16
|
34 |
|
35 |
+
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 canonical dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 2.6574
|
38 |
+
- Rouge1: 28.4262
|
39 |
+
- Rouge2: 12.9627
|
40 |
+
- Rougel: 24.3479
|
41 |
+
- Rougelsum: 26.1183
|
42 |
+
- Gen Len: 37.115
|
43 |
|
44 |
## Model description
|
45 |
|
all_results.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_gen_len": 37.115,
|
4 |
+
"eval_loss": 2.657413959503174,
|
5 |
+
"eval_rouge1": 28.4262,
|
6 |
+
"eval_rouge2": 12.9627,
|
7 |
+
"eval_rougeL": 24.3479,
|
8 |
+
"eval_rougeLsum": 26.1183,
|
9 |
+
"eval_runtime": 1082.3747,
|
10 |
+
"eval_samples": 1000,
|
11 |
+
"eval_samples_per_second": 0.924,
|
12 |
+
"eval_steps_per_second": 0.03,
|
13 |
+
"predict_gen_len": 36.246,
|
14 |
+
"predict_loss": 2.1108694076538086,
|
15 |
+
"predict_rouge1": 36.2324,
|
16 |
+
"predict_rouge2": 20.0427,
|
17 |
+
"predict_rougeL": 31.2369,
|
18 |
+
"predict_rougeLsum": 33.8051,
|
19 |
+
"predict_runtime": 976.7295,
|
20 |
+
"predict_samples": 1000,
|
21 |
+
"predict_samples_per_second": 1.024,
|
22 |
+
"predict_steps_per_second": 0.033,
|
23 |
+
"total_flos": 3450965852160000.0,
|
24 |
+
"train_loss": 2.2952696300688245,
|
25 |
+
"train_runtime": 1511.6568,
|
26 |
+
"train_samples": 1000,
|
27 |
+
"train_samples_per_second": 3.308,
|
28 |
+
"train_steps_per_second": 0.208
|
29 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_gen_len": 37.115,
|
4 |
+
"eval_loss": 2.657413959503174,
|
5 |
+
"eval_rouge1": 28.4262,
|
6 |
+
"eval_rouge2": 12.9627,
|
7 |
+
"eval_rougeL": 24.3479,
|
8 |
+
"eval_rougeLsum": 26.1183,
|
9 |
+
"eval_runtime": 1082.3747,
|
10 |
+
"eval_samples": 1000,
|
11 |
+
"eval_samples_per_second": 0.924,
|
12 |
+
"eval_steps_per_second": 0.03
|
13 |
+
}
|
generated_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
predict_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"predict_gen_len": 36.246,
|
3 |
+
"predict_loss": 2.1108694076538086,
|
4 |
+
"predict_rouge1": 36.2324,
|
5 |
+
"predict_rouge2": 20.0427,
|
6 |
+
"predict_rougeL": 31.2369,
|
7 |
+
"predict_rougeLsum": 33.8051,
|
8 |
+
"predict_runtime": 976.7295,
|
9 |
+
"predict_samples": 1000,
|
10 |
+
"predict_samples_per_second": 1.024,
|
11 |
+
"predict_steps_per_second": 0.033
|
12 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"total_flos": 3450965852160000.0,
|
4 |
+
"train_loss": 2.2952696300688245,
|
5 |
+
"train_runtime": 1511.6568,
|
6 |
+
"train_samples": 1000,
|
7 |
+
"train_samples_per_second": 3.308,
|
8 |
+
"train_steps_per_second": 0.208
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 28.5562,
|
3 |
+
"best_model_checkpoint": "bin/liputan6-lora-16/checkpoint-252",
|
4 |
+
"epoch": 5.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 315,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"grad_norm": 1.2158453464508057,
|
14 |
+
"learning_rate": 0.0008,
|
15 |
+
"loss": 2.9434,
|
16 |
+
"step": 63
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.0,
|
20 |
+
"eval_gen_len": 35.404,
|
21 |
+
"eval_loss": 2.6951351165771484,
|
22 |
+
"eval_rouge1": 25.6796,
|
23 |
+
"eval_rouge2": 11.0701,
|
24 |
+
"eval_rougeL": 22.1424,
|
25 |
+
"eval_rougeLsum": 23.2849,
|
26 |
+
"eval_runtime": 342.3214,
|
27 |
+
"eval_samples_per_second": 2.921,
|
28 |
+
"eval_steps_per_second": 0.093,
|
29 |
+
"step": 63
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 2.0,
|
33 |
+
"grad_norm": 1.3100322484970093,
|
34 |
+
"learning_rate": 0.0006,
|
35 |
+
"loss": 2.3008,
|
36 |
+
"step": 126
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 2.0,
|
40 |
+
"eval_gen_len": 35.768,
|
41 |
+
"eval_loss": 2.654245376586914,
|
42 |
+
"eval_rouge1": 27.4005,
|
43 |
+
"eval_rouge2": 12.0574,
|
44 |
+
"eval_rougeL": 23.6657,
|
45 |
+
"eval_rougeLsum": 25.1251,
|
46 |
+
"eval_runtime": 257.9915,
|
47 |
+
"eval_samples_per_second": 3.876,
|
48 |
+
"eval_steps_per_second": 0.124,
|
49 |
+
"step": 126
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 3.0,
|
53 |
+
"grad_norm": 1.364740014076233,
|
54 |
+
"learning_rate": 0.0004,
|
55 |
+
"loss": 2.1668,
|
56 |
+
"step": 189
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 3.0,
|
60 |
+
"eval_gen_len": 32.749,
|
61 |
+
"eval_loss": 2.6101162433624268,
|
62 |
+
"eval_rouge1": 28.0403,
|
63 |
+
"eval_rouge2": 12.2713,
|
64 |
+
"eval_rougeL": 23.9451,
|
65 |
+
"eval_rougeLsum": 25.7556,
|
66 |
+
"eval_runtime": 180.1413,
|
67 |
+
"eval_samples_per_second": 5.551,
|
68 |
+
"eval_steps_per_second": 0.178,
|
69 |
+
"step": 189
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 4.0,
|
73 |
+
"grad_norm": 1.419220209121704,
|
74 |
+
"learning_rate": 0.0002,
|
75 |
+
"loss": 2.0618,
|
76 |
+
"step": 252
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 4.0,
|
80 |
+
"eval_gen_len": 32.931,
|
81 |
+
"eval_loss": 2.657413959503174,
|
82 |
+
"eval_rouge1": 28.5562,
|
83 |
+
"eval_rouge2": 12.5992,
|
84 |
+
"eval_rougeL": 24.2399,
|
85 |
+
"eval_rougeLsum": 26.2278,
|
86 |
+
"eval_runtime": 174.5382,
|
87 |
+
"eval_samples_per_second": 5.729,
|
88 |
+
"eval_steps_per_second": 0.183,
|
89 |
+
"step": 252
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 5.0,
|
93 |
+
"grad_norm": 1.2581560611724854,
|
94 |
+
"learning_rate": 0.0,
|
95 |
+
"loss": 2.0036,
|
96 |
+
"step": 315
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 5.0,
|
100 |
+
"eval_gen_len": 33.644,
|
101 |
+
"eval_loss": 2.661618232727051,
|
102 |
+
"eval_rouge1": 28.2024,
|
103 |
+
"eval_rouge2": 12.3241,
|
104 |
+
"eval_rougeL": 23.9228,
|
105 |
+
"eval_rougeLsum": 25.9287,
|
106 |
+
"eval_runtime": 195.8376,
|
107 |
+
"eval_samples_per_second": 5.106,
|
108 |
+
"eval_steps_per_second": 0.163,
|
109 |
+
"step": 315
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 5.0,
|
113 |
+
"step": 315,
|
114 |
+
"total_flos": 3450965852160000.0,
|
115 |
+
"train_loss": 2.2952696300688245,
|
116 |
+
"train_runtime": 1511.6568,
|
117 |
+
"train_samples_per_second": 3.308,
|
118 |
+
"train_steps_per_second": 0.208
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"logging_steps": 500,
|
122 |
+
"max_steps": 315,
|
123 |
+
"num_input_tokens_seen": 0,
|
124 |
+
"num_train_epochs": 5,
|
125 |
+
"save_steps": 500,
|
126 |
+
"total_flos": 3450965852160000.0,
|
127 |
+
"train_batch_size": 16,
|
128 |
+
"trial_name": null,
|
129 |
+
"trial_params": null
|
130 |
+
}
|