End of training
Browse files- README.md +23 -8
- all_results.json +22 -22
- eval_results.json +9 -9
- generated_predictions.txt +0 -0
- predict_results.json +9 -9
- train_results.json +4 -4
- trainer_state.json +60 -60
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: LazarusNLP/IndoNanoT5-base
|
4 |
tags:
|
@@ -9,7 +11,20 @@ metrics:
|
|
9 |
- rouge
|
10 |
model-index:
|
11 |
- name: liputan6-lora-8
|
12 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# liputan6-lora-8
|
19 |
|
20 |
-
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Rouge1:
|
24 |
-
- Rouge2:
|
25 |
-
- Rougel:
|
26 |
-
- Rougelsum:
|
27 |
-
- Gen Len:
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
license: apache-2.0
|
5 |
base_model: LazarusNLP/IndoNanoT5-base
|
6 |
tags:
|
|
|
11 |
- rouge
|
12 |
model-index:
|
13 |
- name: liputan6-lora-8
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Summarization
|
17 |
+
type: summarization
|
18 |
+
dataset:
|
19 |
+
name: id_liputan6 canonical
|
20 |
+
type: id_liputan6
|
21 |
+
config: canonical
|
22 |
+
split: validation
|
23 |
+
args: canonical
|
24 |
+
metrics:
|
25 |
+
- name: Rouge1
|
26 |
+
type: rouge
|
27 |
+
value: 44.041
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
# liputan6-lora-8
|
34 |
|
35 |
+
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the id_liputan6 canonical dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.2482
|
38 |
+
- Rouge1: 44.041
|
39 |
+
- Rouge2: 35.4021
|
40 |
+
- Rougel: 40.435
|
41 |
+
- Rougelsum: 42.6248
|
42 |
+
- Gen Len: 60.602
|
43 |
|
44 |
## Model description
|
45 |
|
all_results.json
CHANGED
@@ -1,29 +1,29 @@
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
-
"eval_gen_len":
|
4 |
-
"eval_loss":
|
5 |
-
"eval_rouge1":
|
6 |
-
"eval_rouge2":
|
7 |
-
"eval_rougeL":
|
8 |
-
"eval_rougeLsum":
|
9 |
-
"eval_runtime":
|
10 |
"eval_samples": 1000,
|
11 |
-
"eval_samples_per_second":
|
12 |
-
"eval_steps_per_second": 0.
|
13 |
-
"predict_gen_len":
|
14 |
-
"predict_loss":
|
15 |
-
"predict_rouge1":
|
16 |
-
"predict_rouge2":
|
17 |
-
"predict_rougeL":
|
18 |
-
"predict_rougeLsum":
|
19 |
-
"predict_runtime":
|
20 |
"predict_samples": 1000,
|
21 |
-
"predict_samples_per_second":
|
22 |
-
"predict_steps_per_second": 0.
|
23 |
"total_flos": 3437376307200000.0,
|
24 |
-
"train_loss":
|
25 |
-
"train_runtime":
|
26 |
"train_samples": 1000,
|
27 |
-
"train_samples_per_second":
|
28 |
-
"train_steps_per_second": 0.
|
29 |
}
|
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
+
"eval_gen_len": 60.602,
|
4 |
+
"eval_loss": 0.2482166737318039,
|
5 |
+
"eval_rouge1": 44.041,
|
6 |
+
"eval_rouge2": 35.4021,
|
7 |
+
"eval_rougeL": 40.435,
|
8 |
+
"eval_rougeLsum": 42.6248,
|
9 |
+
"eval_runtime": 1953.2624,
|
10 |
"eval_samples": 1000,
|
11 |
+
"eval_samples_per_second": 0.512,
|
12 |
+
"eval_steps_per_second": 0.016,
|
13 |
+
"predict_gen_len": 57.55,
|
14 |
+
"predict_loss": 0.26384109258651733,
|
15 |
+
"predict_rouge1": 47.4027,
|
16 |
+
"predict_rouge2": 39.6598,
|
17 |
+
"predict_rougeL": 44.3945,
|
18 |
+
"predict_rougeLsum": 46.4662,
|
19 |
+
"predict_runtime": 1956.9719,
|
20 |
"predict_samples": 1000,
|
21 |
+
"predict_samples_per_second": 0.511,
|
22 |
+
"predict_steps_per_second": 0.016,
|
23 |
"total_flos": 3437376307200000.0,
|
24 |
+
"train_loss": 0.6767798650832403,
|
25 |
+
"train_runtime": 2125.3106,
|
26 |
"train_samples": 1000,
|
27 |
+
"train_samples_per_second": 2.353,
|
28 |
+
"train_steps_per_second": 0.148
|
29 |
}
|
eval_results.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
-
"eval_gen_len":
|
4 |
-
"eval_loss":
|
5 |
-
"eval_rouge1":
|
6 |
-
"eval_rouge2":
|
7 |
-
"eval_rougeL":
|
8 |
-
"eval_rougeLsum":
|
9 |
-
"eval_runtime":
|
10 |
"eval_samples": 1000,
|
11 |
-
"eval_samples_per_second":
|
12 |
-
"eval_steps_per_second": 0.
|
13 |
}
|
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
+
"eval_gen_len": 60.602,
|
4 |
+
"eval_loss": 0.2482166737318039,
|
5 |
+
"eval_rouge1": 44.041,
|
6 |
+
"eval_rouge2": 35.4021,
|
7 |
+
"eval_rougeL": 40.435,
|
8 |
+
"eval_rougeLsum": 42.6248,
|
9 |
+
"eval_runtime": 1953.2624,
|
10 |
"eval_samples": 1000,
|
11 |
+
"eval_samples_per_second": 0.512,
|
12 |
+
"eval_steps_per_second": 0.016
|
13 |
}
|
generated_predictions.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
predict_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
-
"predict_gen_len":
|
3 |
-
"predict_loss":
|
4 |
-
"predict_rouge1":
|
5 |
-
"predict_rouge2":
|
6 |
-
"predict_rougeL":
|
7 |
-
"predict_rougeLsum":
|
8 |
-
"predict_runtime":
|
9 |
"predict_samples": 1000,
|
10 |
-
"predict_samples_per_second":
|
11 |
-
"predict_steps_per_second": 0.
|
12 |
}
|
|
|
1 |
{
|
2 |
+
"predict_gen_len": 57.55,
|
3 |
+
"predict_loss": 0.26384109258651733,
|
4 |
+
"predict_rouge1": 47.4027,
|
5 |
+
"predict_rouge2": 39.6598,
|
6 |
+
"predict_rougeL": 44.3945,
|
7 |
+
"predict_rougeLsum": 46.4662,
|
8 |
+
"predict_runtime": 1956.9719,
|
9 |
"predict_samples": 1000,
|
10 |
+
"predict_samples_per_second": 0.511,
|
11 |
+
"predict_steps_per_second": 0.016
|
12 |
}
|
train_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
"total_flos": 3437376307200000.0,
|
4 |
-
"train_loss":
|
5 |
-
"train_runtime":
|
6 |
"train_samples": 1000,
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second": 0.
|
9 |
}
|
|
|
1 |
{
|
2 |
"epoch": 5.0,
|
3 |
"total_flos": 3437376307200000.0,
|
4 |
+
"train_loss": 0.6767798650832403,
|
5 |
+
"train_runtime": 2125.3106,
|
6 |
"train_samples": 1000,
|
7 |
+
"train_samples_per_second": 2.353,
|
8 |
+
"train_steps_per_second": 0.148
|
9 |
}
|
trainer_state.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"best_metric":
|
3 |
"best_model_checkpoint": "bin/liputan6-lora-8/checkpoint-252",
|
4 |
"epoch": 5.0,
|
5 |
"eval_steps": 500,
|
@@ -10,112 +10,112 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
-
"grad_norm": 1.
|
14 |
"learning_rate": 0.0008,
|
15 |
-
"loss":
|
16 |
"step": 63
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
-
"eval_gen_len":
|
21 |
-
"eval_loss":
|
22 |
-
"eval_rouge1":
|
23 |
-
"eval_rouge2":
|
24 |
-
"eval_rougeL":
|
25 |
-
"eval_rougeLsum":
|
26 |
-
"eval_runtime":
|
27 |
-
"eval_samples_per_second":
|
28 |
-
"eval_steps_per_second": 0.
|
29 |
"step": 63
|
30 |
},
|
31 |
{
|
32 |
"epoch": 2.0,
|
33 |
-
"grad_norm": 1.
|
34 |
"learning_rate": 0.0006,
|
35 |
-
"loss":
|
36 |
"step": 126
|
37 |
},
|
38 |
{
|
39 |
"epoch": 2.0,
|
40 |
-
"eval_gen_len":
|
41 |
-
"eval_loss":
|
42 |
-
"eval_rouge1":
|
43 |
-
"eval_rouge2":
|
44 |
-
"eval_rougeL":
|
45 |
-
"eval_rougeLsum":
|
46 |
-
"eval_runtime":
|
47 |
-
"eval_samples_per_second":
|
48 |
-
"eval_steps_per_second": 0.
|
49 |
"step": 126
|
50 |
},
|
51 |
{
|
52 |
"epoch": 3.0,
|
53 |
-
"grad_norm": 1.
|
54 |
"learning_rate": 0.0004,
|
55 |
-
"loss":
|
56 |
"step": 189
|
57 |
},
|
58 |
{
|
59 |
"epoch": 3.0,
|
60 |
-
"eval_gen_len":
|
61 |
-
"eval_loss":
|
62 |
-
"eval_rouge1":
|
63 |
-
"eval_rouge2":
|
64 |
-
"eval_rougeL":
|
65 |
-
"eval_rougeLsum":
|
66 |
-
"eval_runtime":
|
67 |
-
"eval_samples_per_second":
|
68 |
-
"eval_steps_per_second": 0.
|
69 |
"step": 189
|
70 |
},
|
71 |
{
|
72 |
"epoch": 4.0,
|
73 |
-
"grad_norm":
|
74 |
"learning_rate": 0.0002,
|
75 |
-
"loss":
|
76 |
"step": 252
|
77 |
},
|
78 |
{
|
79 |
"epoch": 4.0,
|
80 |
-
"eval_gen_len":
|
81 |
-
"eval_loss":
|
82 |
-
"eval_rouge1":
|
83 |
-
"eval_rouge2":
|
84 |
-
"eval_rougeL":
|
85 |
-
"eval_rougeLsum":
|
86 |
-
"eval_runtime":
|
87 |
-
"eval_samples_per_second":
|
88 |
-
"eval_steps_per_second": 0.
|
89 |
"step": 252
|
90 |
},
|
91 |
{
|
92 |
"epoch": 5.0,
|
93 |
-
"grad_norm": 1.
|
94 |
"learning_rate": 0.0,
|
95 |
-
"loss":
|
96 |
"step": 315
|
97 |
},
|
98 |
{
|
99 |
"epoch": 5.0,
|
100 |
-
"eval_gen_len":
|
101 |
-
"eval_loss":
|
102 |
-
"eval_rouge1":
|
103 |
-
"eval_rouge2":
|
104 |
-
"eval_rougeL":
|
105 |
-
"eval_rougeLsum":
|
106 |
-
"eval_runtime":
|
107 |
-
"eval_samples_per_second":
|
108 |
-
"eval_steps_per_second": 0.
|
109 |
"step": 315
|
110 |
},
|
111 |
{
|
112 |
"epoch": 5.0,
|
113 |
"step": 315,
|
114 |
"total_flos": 3437376307200000.0,
|
115 |
-
"train_loss":
|
116 |
-
"train_runtime":
|
117 |
-
"train_samples_per_second":
|
118 |
-
"train_steps_per_second": 0.
|
119 |
}
|
120 |
],
|
121 |
"logging_steps": 500,
|
|
|
1 |
{
|
2 |
+
"best_metric": 42.8202,
|
3 |
"best_model_checkpoint": "bin/liputan6-lora-8/checkpoint-252",
|
4 |
"epoch": 5.0,
|
5 |
"eval_steps": 500,
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
+
"grad_norm": 1.214747428894043,
|
14 |
"learning_rate": 0.0008,
|
15 |
+
"loss": 1.4611,
|
16 |
"step": 63
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
+
"eval_gen_len": 26.342,
|
21 |
+
"eval_loss": 0.4168391823768616,
|
22 |
+
"eval_rouge1": 20.2294,
|
23 |
+
"eval_rouge2": 15.1672,
|
24 |
+
"eval_rougeL": 18.3462,
|
25 |
+
"eval_rougeLsum": 19.5551,
|
26 |
+
"eval_runtime": 361.7096,
|
27 |
+
"eval_samples_per_second": 2.765,
|
28 |
+
"eval_steps_per_second": 0.088,
|
29 |
"step": 63
|
30 |
},
|
31 |
{
|
32 |
"epoch": 2.0,
|
33 |
+
"grad_norm": 1.2018976211547852,
|
34 |
"learning_rate": 0.0006,
|
35 |
+
"loss": 0.6123,
|
36 |
"step": 126
|
37 |
},
|
38 |
{
|
39 |
"epoch": 2.0,
|
40 |
+
"eval_gen_len": 54.709,
|
41 |
+
"eval_loss": 0.3029869794845581,
|
42 |
+
"eval_rouge1": 42.4943,
|
43 |
+
"eval_rouge2": 33.9837,
|
44 |
+
"eval_rougeL": 39.042,
|
45 |
+
"eval_rougeLsum": 40.9843,
|
46 |
+
"eval_runtime": 392.3812,
|
47 |
+
"eval_samples_per_second": 2.549,
|
48 |
+
"eval_steps_per_second": 0.082,
|
49 |
"step": 126
|
50 |
},
|
51 |
{
|
52 |
"epoch": 3.0,
|
53 |
+
"grad_norm": 1.4286189079284668,
|
54 |
"learning_rate": 0.0004,
|
55 |
+
"loss": 0.4836,
|
56 |
"step": 189
|
57 |
},
|
58 |
{
|
59 |
"epoch": 3.0,
|
60 |
+
"eval_gen_len": 48.258,
|
61 |
+
"eval_loss": 0.2516452670097351,
|
62 |
+
"eval_rouge1": 39.2983,
|
63 |
+
"eval_rouge2": 30.3972,
|
64 |
+
"eval_rougeL": 36.1696,
|
65 |
+
"eval_rougeLsum": 37.7681,
|
66 |
+
"eval_runtime": 320.2113,
|
67 |
+
"eval_samples_per_second": 3.123,
|
68 |
+
"eval_steps_per_second": 0.1,
|
69 |
"step": 189
|
70 |
},
|
71 |
{
|
72 |
"epoch": 4.0,
|
73 |
+
"grad_norm": 0.9979777932167053,
|
74 |
"learning_rate": 0.0002,
|
75 |
+
"loss": 0.4256,
|
76 |
"step": 252
|
77 |
},
|
78 |
{
|
79 |
"epoch": 4.0,
|
80 |
+
"eval_gen_len": 54.56,
|
81 |
+
"eval_loss": 0.2482166737318039,
|
82 |
+
"eval_rouge1": 42.8202,
|
83 |
+
"eval_rouge2": 33.9496,
|
84 |
+
"eval_rougeL": 39.2137,
|
85 |
+
"eval_rougeLsum": 41.343,
|
86 |
+
"eval_runtime": 345.5791,
|
87 |
+
"eval_samples_per_second": 2.894,
|
88 |
+
"eval_steps_per_second": 0.093,
|
89 |
"step": 252
|
90 |
},
|
91 |
{
|
92 |
"epoch": 5.0,
|
93 |
+
"grad_norm": 1.1315256357192993,
|
94 |
"learning_rate": 0.0,
|
95 |
+
"loss": 0.4014,
|
96 |
"step": 315
|
97 |
},
|
98 |
{
|
99 |
"epoch": 5.0,
|
100 |
+
"eval_gen_len": 55.005,
|
101 |
+
"eval_loss": 0.23890838027000427,
|
102 |
+
"eval_rouge1": 42.5107,
|
103 |
+
"eval_rouge2": 33.6017,
|
104 |
+
"eval_rougeL": 39.0118,
|
105 |
+
"eval_rougeLsum": 41.0601,
|
106 |
+
"eval_runtime": 343.6619,
|
107 |
+
"eval_samples_per_second": 2.91,
|
108 |
+
"eval_steps_per_second": 0.093,
|
109 |
"step": 315
|
110 |
},
|
111 |
{
|
112 |
"epoch": 5.0,
|
113 |
"step": 315,
|
114 |
"total_flos": 3437376307200000.0,
|
115 |
+
"train_loss": 0.6767798650832403,
|
116 |
+
"train_runtime": 2125.3106,
|
117 |
+
"train_samples_per_second": 2.353,
|
118 |
+
"train_steps_per_second": 0.148
|
119 |
}
|
120 |
],
|
121 |
"logging_steps": 500,
|