--- language: - id license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: nerugm-lora-r8-2 results: [] --- # nerugm-lora-r8-2 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1743 - Precision: 0.6820 - Recall: 0.8289 - F1: 0.7483 - Accuracy: 0.9445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.2665 | 1.0 | 106 | 0.7137 | 0.0 | 0.0 | 0.0 | 0.8449 | | 0.713 | 2.0 | 212 | 0.6075 | 0.0 | 0.0 | 0.0 | 0.8451 | | 0.6346 | 3.0 | 318 | 0.5231 | 0.1905 | 0.0118 | 0.0222 | 0.8494 | | 0.5555 | 4.0 | 424 | 0.4458 | 0.275 | 0.0649 | 0.1050 | 0.8656 | | 0.4696 | 5.0 | 530 | 0.3715 | 0.4802 | 0.2861 | 0.3586 | 0.8949 | | 0.3932 | 6.0 | 636 | 0.3134 | 0.5563 | 0.5251 | 0.5402 | 0.9194 | | 0.3299 | 7.0 | 742 | 0.2706 | 0.5968 | 0.6637 | 0.6285 | 0.9277 | | 0.2896 | 8.0 | 848 | 0.2433 | 0.62 | 0.7316 | 0.6712 | 0.9340 | | 0.2656 | 9.0 | 954 | 0.2277 | 0.6289 | 0.7699 | 0.6923 | 0.9355 | | 0.2442 | 10.0 | 1060 | 0.2082 | 0.6526 | 0.7758 | 0.7089 | 0.9387 | | 0.23 | 11.0 | 1166 | 0.2020 | 0.6390 | 0.7935 | 0.7079 | 0.9382 | | 0.2229 | 12.0 | 1272 | 0.1977 | 0.6524 | 0.8083 | 0.7220 | 0.9385 | | 0.2132 | 13.0 | 1378 | 0.1886 | 0.6602 | 0.8083 | 0.7268 | 0.9402 | | 0.2055 | 14.0 | 1484 | 0.1810 | 0.6708 | 0.7994 | 0.7295 | 0.9415 | | 0.2038 | 15.0 | 1590 | 0.1822 | 0.6595 | 0.8112 | 0.7275 | 0.9405 | | 0.2004 | 16.0 | 1696 | 0.1788 | 0.6731 | 0.8201 | 0.7394 | 0.9430 | | 0.1966 | 17.0 | 1802 | 0.1775 | 0.6731 | 0.8260 | 0.7417 | 0.9432 | | 0.1931 | 18.0 | 1908 | 0.1765 | 0.6683 | 0.8260 | 0.7388 | 0.9435 | | 0.1937 | 19.0 | 2014 | 0.1749 | 0.6747 | 0.8260 | 0.7427 | 0.9437 | | 0.1888 | 20.0 | 2120 | 0.1743 | 0.6820 | 0.8289 | 0.7483 | 0.9445 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2