End of training
Browse files- README.md +2 -0
- all_results.json +16 -16
- eval_results.json +8 -8
- predict_results.json +4 -4
- predict_results.txt +51 -51
- runs/Jun03_13-22-10_a358b85c7679/events.out.tfevents.1717421575.a358b85c7679.105407.1 +3 -0
- train_results.json +4 -4
- trainer_state.json +202 -202
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: mit
|
3 |
base_model: indolem/indobert-base-uncased
|
4 |
tags:
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- id
|
4 |
license: mit
|
5 |
base_model: indolem/indobert-base-uncased
|
6 |
tags:
|
all_results.json
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
"epoch": 20.0,
|
4 |
-
"eval_accuracy": 0.
|
5 |
-
"eval_f1": 0.
|
6 |
-
"eval_loss": 0.
|
7 |
-
"eval_precision": 0.
|
8 |
-
"eval_recall": 0.
|
9 |
-
"eval_runtime":
|
10 |
"eval_samples": 399,
|
11 |
-
"eval_samples_per_second":
|
12 |
-
"eval_steps_per_second":
|
13 |
-
"f1": 0.
|
14 |
-
"precision": 0.
|
15 |
-
"recall": 0.
|
16 |
-
"train_loss": 0.
|
17 |
-
"train_runtime":
|
18 |
"train_samples": 3638,
|
19 |
-
"train_samples_per_second":
|
20 |
-
"train_steps_per_second":
|
21 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.9060336300692384,
|
3 |
"epoch": 20.0,
|
4 |
+
"eval_accuracy": 0.8847117794486216,
|
5 |
+
"eval_f1": 0.8609292598654301,
|
6 |
+
"eval_loss": 0.3090469241142273,
|
7 |
+
"eval_precision": 0.8609292598654301,
|
8 |
+
"eval_recall": 0.8609292598654301,
|
9 |
+
"eval_runtime": 1.8139,
|
10 |
"eval_samples": 399,
|
11 |
+
"eval_samples_per_second": 219.963,
|
12 |
+
"eval_steps_per_second": 27.564,
|
13 |
+
"f1": 0.8885945244345052,
|
14 |
+
"precision": 0.8834872799509323,
|
15 |
+
"recall": 0.8943164810753316,
|
16 |
+
"train_loss": 0.242632052937492,
|
17 |
+
"train_runtime": 627.3825,
|
18 |
"train_samples": 3638,
|
19 |
+
"train_samples_per_second": 115.974,
|
20 |
+
"train_steps_per_second": 3.889
|
21 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
"eval_samples": 399,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"eval_accuracy": 0.8847117794486216,
|
4 |
+
"eval_f1": 0.8609292598654301,
|
5 |
+
"eval_loss": 0.3090469241142273,
|
6 |
+
"eval_precision": 0.8609292598654301,
|
7 |
+
"eval_recall": 0.8609292598654301,
|
8 |
+
"eval_runtime": 1.8139,
|
9 |
"eval_samples": 399,
|
10 |
+
"eval_samples_per_second": 219.963,
|
11 |
+
"eval_steps_per_second": 27.564
|
12 |
}
|
predict_results.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
-
"accuracy": 0.
|
3 |
-
"f1": 0.
|
4 |
-
"precision": 0.
|
5 |
-
"recall": 0.
|
6 |
}
|
|
|
1 |
{
|
2 |
+
"accuracy": 0.9060336300692384,
|
3 |
+
"f1": 0.8885945244345052,
|
4 |
+
"precision": 0.8834872799509323,
|
5 |
+
"recall": 0.8943164810753316
|
6 |
}
|
predict_results.txt
CHANGED
@@ -21,7 +21,7 @@ index prediction
|
|
21 |
19 1
|
22 |
20 1
|
23 |
21 1
|
24 |
-
22
|
25 |
23 1
|
26 |
24 1
|
27 |
25 0
|
@@ -35,7 +35,7 @@ index prediction
|
|
35 |
33 1
|
36 |
34 1
|
37 |
35 1
|
38 |
-
36
|
39 |
37 1
|
40 |
38 1
|
41 |
39 1
|
@@ -44,17 +44,17 @@ index prediction
|
|
44 |
42 1
|
45 |
43 1
|
46 |
44 1
|
47 |
-
45
|
48 |
46 1
|
49 |
47 1
|
50 |
48 1
|
51 |
49 1
|
52 |
50 1
|
53 |
-
51
|
54 |
52 1
|
55 |
53 1
|
56 |
54 1
|
57 |
-
55
|
58 |
56 1
|
59 |
57 1
|
60 |
58 1
|
@@ -67,7 +67,7 @@ index prediction
|
|
67 |
65 1
|
68 |
66 1
|
69 |
67 0
|
70 |
-
68
|
71 |
69 1
|
72 |
70 1
|
73 |
71 1
|
@@ -81,7 +81,7 @@ index prediction
|
|
81 |
79 1
|
82 |
80 1
|
83 |
81 1
|
84 |
-
82
|
85 |
83 0
|
86 |
84 1
|
87 |
85 1
|
@@ -101,12 +101,12 @@ index prediction
|
|
101 |
99 1
|
102 |
100 1
|
103 |
101 1
|
104 |
-
102
|
105 |
103 1
|
106 |
104 1
|
107 |
-
105
|
108 |
106 1
|
109 |
-
107
|
110 |
108 1
|
111 |
109 1
|
112 |
110 1
|
@@ -120,7 +120,7 @@ index prediction
|
|
120 |
118 1
|
121 |
119 1
|
122 |
120 0
|
123 |
-
121
|
124 |
122 1
|
125 |
123 1
|
126 |
124 0
|
@@ -151,7 +151,7 @@ index prediction
|
|
151 |
149 1
|
152 |
150 1
|
153 |
151 0
|
154 |
-
152
|
155 |
153 1
|
156 |
154 1
|
157 |
155 1
|
@@ -171,16 +171,16 @@ index prediction
|
|
171 |
169 1
|
172 |
170 0
|
173 |
171 1
|
174 |
-
172
|
175 |
173 1
|
176 |
174 0
|
177 |
175 1
|
178 |
176 1
|
179 |
177 1
|
180 |
178 1
|
181 |
-
179
|
182 |
180 1
|
183 |
-
181
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
@@ -223,7 +223,7 @@ index prediction
|
|
223 |
221 1
|
224 |
222 1
|
225 |
223 1
|
226 |
-
224
|
227 |
225 1
|
228 |
226 1
|
229 |
227 1
|
@@ -238,7 +238,7 @@ index prediction
|
|
238 |
236 1
|
239 |
237 0
|
240 |
238 1
|
241 |
-
239
|
242 |
240 1
|
243 |
241 1
|
244 |
242 1
|
@@ -247,7 +247,7 @@ index prediction
|
|
247 |
245 1
|
248 |
246 1
|
249 |
247 1
|
250 |
-
248
|
251 |
249 1
|
252 |
250 1
|
253 |
251 1
|
@@ -259,10 +259,10 @@ index prediction
|
|
259 |
257 1
|
260 |
258 1
|
261 |
259 1
|
262 |
-
260
|
263 |
261 1
|
264 |
262 1
|
265 |
-
263
|
266 |
264 1
|
267 |
265 1
|
268 |
266 1
|
@@ -299,9 +299,9 @@ index prediction
|
|
299 |
297 1
|
300 |
298 0
|
301 |
299 0
|
302 |
-
300
|
303 |
301 0
|
304 |
-
302
|
305 |
303 0
|
306 |
304 0
|
307 |
305 0
|
@@ -322,13 +322,13 @@ index prediction
|
|
322 |
320 0
|
323 |
321 0
|
324 |
322 0
|
325 |
-
323
|
326 |
324 1
|
327 |
325 0
|
328 |
326 0
|
329 |
327 0
|
330 |
328 0
|
331 |
-
329
|
332 |
330 0
|
333 |
331 0
|
334 |
332 0
|
@@ -341,12 +341,12 @@ index prediction
|
|
341 |
339 0
|
342 |
340 1
|
343 |
341 0
|
344 |
-
342
|
345 |
343 0
|
346 |
344 0
|
347 |
345 0
|
348 |
346 0
|
349 |
-
347
|
350 |
348 0
|
351 |
349 0
|
352 |
350 0
|
@@ -381,7 +381,7 @@ index prediction
|
|
381 |
379 0
|
382 |
380 0
|
383 |
381 0
|
384 |
-
382
|
385 |
383 1
|
386 |
384 0
|
387 |
385 0
|
@@ -434,7 +434,7 @@ index prediction
|
|
434 |
432 0
|
435 |
433 0
|
436 |
434 1
|
437 |
-
435
|
438 |
436 0
|
439 |
437 0
|
440 |
438 0
|
@@ -448,15 +448,15 @@ index prediction
|
|
448 |
446 0
|
449 |
447 0
|
450 |
448 0
|
451 |
-
449
|
452 |
450 0
|
453 |
451 0
|
454 |
452 0
|
455 |
453 0
|
456 |
454 0
|
457 |
-
455
|
458 |
456 0
|
459 |
-
457
|
460 |
458 0
|
461 |
459 0
|
462 |
460 0
|
@@ -486,7 +486,7 @@ index prediction
|
|
486 |
484 0
|
487 |
485 0
|
488 |
486 0
|
489 |
-
487
|
490 |
488 0
|
491 |
489 0
|
492 |
490 0
|
@@ -497,12 +497,12 @@ index prediction
|
|
497 |
495 0
|
498 |
496 0
|
499 |
497 0
|
500 |
-
498
|
501 |
499 0
|
502 |
500 0
|
503 |
501 0
|
504 |
502 0
|
505 |
-
503
|
506 |
504 0
|
507 |
505 0
|
508 |
506 0
|
@@ -540,7 +540,7 @@ index prediction
|
|
540 |
538 0
|
541 |
539 0
|
542 |
540 0
|
543 |
-
541
|
544 |
542 0
|
545 |
543 0
|
546 |
544 0
|
@@ -580,7 +580,7 @@ index prediction
|
|
580 |
578 0
|
581 |
579 1
|
582 |
580 0
|
583 |
-
581
|
584 |
582 1
|
585 |
583 0
|
586 |
584 0
|
@@ -591,7 +591,7 @@ index prediction
|
|
591 |
589 0
|
592 |
590 0
|
593 |
591 1
|
594 |
-
592
|
595 |
593 0
|
596 |
594 0
|
597 |
595 0
|
@@ -620,7 +620,7 @@ index prediction
|
|
620 |
618 0
|
621 |
619 0
|
622 |
620 0
|
623 |
-
621
|
624 |
622 0
|
625 |
623 0
|
626 |
624 0
|
@@ -678,7 +678,7 @@ index prediction
|
|
678 |
676 0
|
679 |
677 0
|
680 |
678 0
|
681 |
-
679
|
682 |
680 0
|
683 |
681 0
|
684 |
682 0
|
@@ -711,7 +711,7 @@ index prediction
|
|
711 |
709 0
|
712 |
710 1
|
713 |
711 0
|
714 |
-
712
|
715 |
713 0
|
716 |
714 0
|
717 |
715 1
|
@@ -756,11 +756,11 @@ index prediction
|
|
756 |
754 0
|
757 |
755 0
|
758 |
756 0
|
759 |
-
757
|
760 |
758 0
|
761 |
759 0
|
762 |
760 0
|
763 |
-
761
|
764 |
762 1
|
765 |
763 0
|
766 |
764 0
|
@@ -811,7 +811,7 @@ index prediction
|
|
811 |
809 0
|
812 |
810 0
|
813 |
811 0
|
814 |
-
812
|
815 |
813 0
|
816 |
814 0
|
817 |
815 0
|
@@ -838,20 +838,20 @@ index prediction
|
|
838 |
836 0
|
839 |
837 1
|
840 |
838 0
|
841 |
-
839
|
842 |
840 0
|
843 |
841 0
|
844 |
842 0
|
845 |
843 0
|
846 |
-
844
|
847 |
845 0
|
848 |
-
846
|
849 |
847 0
|
850 |
848 0
|
851 |
849 0
|
852 |
850 0
|
853 |
-
851
|
854 |
-
852
|
855 |
853 0
|
856 |
854 1
|
857 |
855 0
|
@@ -864,7 +864,7 @@ index prediction
|
|
864 |
862 0
|
865 |
863 0
|
866 |
864 0
|
867 |
-
865
|
868 |
866 0
|
869 |
867 0
|
870 |
868 0
|
@@ -899,7 +899,7 @@ index prediction
|
|
899 |
897 0
|
900 |
898 0
|
901 |
899 0
|
902 |
-
900
|
903 |
901 0
|
904 |
902 0
|
905 |
903 0
|
@@ -953,7 +953,7 @@ index prediction
|
|
953 |
951 0
|
954 |
952 0
|
955 |
953 0
|
956 |
-
954
|
957 |
955 0
|
958 |
956 0
|
959 |
957 0
|
|
|
21 |
19 1
|
22 |
20 1
|
23 |
21 1
|
24 |
+
22 1
|
25 |
23 1
|
26 |
24 1
|
27 |
25 0
|
|
|
35 |
33 1
|
36 |
34 1
|
37 |
35 1
|
38 |
+
36 1
|
39 |
37 1
|
40 |
38 1
|
41 |
39 1
|
|
|
44 |
42 1
|
45 |
43 1
|
46 |
44 1
|
47 |
+
45 0
|
48 |
46 1
|
49 |
47 1
|
50 |
48 1
|
51 |
49 1
|
52 |
50 1
|
53 |
+
51 0
|
54 |
52 1
|
55 |
53 1
|
56 |
54 1
|
57 |
+
55 0
|
58 |
56 1
|
59 |
57 1
|
60 |
58 1
|
|
|
67 |
65 1
|
68 |
66 1
|
69 |
67 0
|
70 |
+
68 0
|
71 |
69 1
|
72 |
70 1
|
73 |
71 1
|
|
|
81 |
79 1
|
82 |
80 1
|
83 |
81 1
|
84 |
+
82 0
|
85 |
83 0
|
86 |
84 1
|
87 |
85 1
|
|
|
101 |
99 1
|
102 |
100 1
|
103 |
101 1
|
104 |
+
102 1
|
105 |
103 1
|
106 |
104 1
|
107 |
+
105 1
|
108 |
106 1
|
109 |
+
107 0
|
110 |
108 1
|
111 |
109 1
|
112 |
110 1
|
|
|
120 |
118 1
|
121 |
119 1
|
122 |
120 0
|
123 |
+
121 0
|
124 |
122 1
|
125 |
123 1
|
126 |
124 0
|
|
|
151 |
149 1
|
152 |
150 1
|
153 |
151 0
|
154 |
+
152 1
|
155 |
153 1
|
156 |
154 1
|
157 |
155 1
|
|
|
171 |
169 1
|
172 |
170 0
|
173 |
171 1
|
174 |
+
172 1
|
175 |
173 1
|
176 |
174 0
|
177 |
175 1
|
178 |
176 1
|
179 |
177 1
|
180 |
178 1
|
181 |
+
179 1
|
182 |
180 1
|
183 |
+
181 0
|
184 |
182 1
|
185 |
183 1
|
186 |
184 1
|
|
|
223 |
221 1
|
224 |
222 1
|
225 |
223 1
|
226 |
+
224 1
|
227 |
225 1
|
228 |
226 1
|
229 |
227 1
|
|
|
238 |
236 1
|
239 |
237 0
|
240 |
238 1
|
241 |
+
239 1
|
242 |
240 1
|
243 |
241 1
|
244 |
242 1
|
|
|
247 |
245 1
|
248 |
246 1
|
249 |
247 1
|
250 |
+
248 1
|
251 |
249 1
|
252 |
250 1
|
253 |
251 1
|
|
|
259 |
257 1
|
260 |
258 1
|
261 |
259 1
|
262 |
+
260 1
|
263 |
261 1
|
264 |
262 1
|
265 |
+
263 0
|
266 |
264 1
|
267 |
265 1
|
268 |
266 1
|
|
|
299 |
297 1
|
300 |
298 0
|
301 |
299 0
|
302 |
+
300 1
|
303 |
301 0
|
304 |
+
302 0
|
305 |
303 0
|
306 |
304 0
|
307 |
305 0
|
|
|
322 |
320 0
|
323 |
321 0
|
324 |
322 0
|
325 |
+
323 0
|
326 |
324 1
|
327 |
325 0
|
328 |
326 0
|
329 |
327 0
|
330 |
328 0
|
331 |
+
329 1
|
332 |
330 0
|
333 |
331 0
|
334 |
332 0
|
|
|
341 |
339 0
|
342 |
340 1
|
343 |
341 0
|
344 |
+
342 1
|
345 |
343 0
|
346 |
344 0
|
347 |
345 0
|
348 |
346 0
|
349 |
+
347 1
|
350 |
348 0
|
351 |
349 0
|
352 |
350 0
|
|
|
381 |
379 0
|
382 |
380 0
|
383 |
381 0
|
384 |
+
382 0
|
385 |
383 1
|
386 |
384 0
|
387 |
385 0
|
|
|
434 |
432 0
|
435 |
433 0
|
436 |
434 1
|
437 |
+
435 0
|
438 |
436 0
|
439 |
437 0
|
440 |
438 0
|
|
|
448 |
446 0
|
449 |
447 0
|
450 |
448 0
|
451 |
+
449 1
|
452 |
450 0
|
453 |
451 0
|
454 |
452 0
|
455 |
453 0
|
456 |
454 0
|
457 |
+
455 1
|
458 |
456 0
|
459 |
+
457 1
|
460 |
458 0
|
461 |
459 0
|
462 |
460 0
|
|
|
486 |
484 0
|
487 |
485 0
|
488 |
486 0
|
489 |
+
487 1
|
490 |
488 0
|
491 |
489 0
|
492 |
490 0
|
|
|
497 |
495 0
|
498 |
496 0
|
499 |
497 0
|
500 |
+
498 0
|
501 |
499 0
|
502 |
500 0
|
503 |
501 0
|
504 |
502 0
|
505 |
+
503 0
|
506 |
504 0
|
507 |
505 0
|
508 |
506 0
|
|
|
540 |
538 0
|
541 |
539 0
|
542 |
540 0
|
543 |
+
541 0
|
544 |
542 0
|
545 |
543 0
|
546 |
544 0
|
|
|
580 |
578 0
|
581 |
579 1
|
582 |
580 0
|
583 |
+
581 1
|
584 |
582 1
|
585 |
583 0
|
586 |
584 0
|
|
|
591 |
589 0
|
592 |
590 0
|
593 |
591 1
|
594 |
+
592 0
|
595 |
593 0
|
596 |
594 0
|
597 |
595 0
|
|
|
620 |
618 0
|
621 |
619 0
|
622 |
620 0
|
623 |
+
621 1
|
624 |
622 0
|
625 |
623 0
|
626 |
624 0
|
|
|
678 |
676 0
|
679 |
677 0
|
680 |
678 0
|
681 |
+
679 1
|
682 |
680 0
|
683 |
681 0
|
684 |
682 0
|
|
|
711 |
709 0
|
712 |
710 1
|
713 |
711 0
|
714 |
+
712 1
|
715 |
713 0
|
716 |
714 0
|
717 |
715 1
|
|
|
756 |
754 0
|
757 |
755 0
|
758 |
756 0
|
759 |
+
757 1
|
760 |
758 0
|
761 |
759 0
|
762 |
760 0
|
763 |
+
761 1
|
764 |
762 1
|
765 |
763 0
|
766 |
764 0
|
|
|
811 |
809 0
|
812 |
810 0
|
813 |
811 0
|
814 |
+
812 1
|
815 |
813 0
|
816 |
814 0
|
817 |
815 0
|
|
|
838 |
836 0
|
839 |
837 1
|
840 |
838 0
|
841 |
+
839 1
|
842 |
840 0
|
843 |
841 0
|
844 |
842 0
|
845 |
843 0
|
846 |
+
844 0
|
847 |
845 0
|
848 |
+
846 0
|
849 |
847 0
|
850 |
848 0
|
851 |
849 0
|
852 |
850 0
|
853 |
+
851 0
|
854 |
+
852 1
|
855 |
853 0
|
856 |
854 1
|
857 |
855 0
|
|
|
864 |
862 0
|
865 |
863 0
|
866 |
864 0
|
867 |
+
865 0
|
868 |
866 0
|
869 |
867 0
|
870 |
868 0
|
|
|
899 |
897 0
|
900 |
898 0
|
901 |
899 0
|
902 |
+
900 0
|
903 |
901 0
|
904 |
902 0
|
905 |
903 0
|
|
|
953 |
951 0
|
954 |
952 0
|
955 |
953 0
|
956 |
+
954 1
|
957 |
955 0
|
958 |
956 0
|
959 |
957 0
|
runs/Jun03_13-22-10_a358b85c7679/events.out.tfevents.1717421575.a358b85c7679.105407.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fea77e7b0238bbebb10f355daa390b96c3c8f1d50c8df03db0581d0f9f01244
|
3 |
+
size 560
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 3638,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 20.0,
|
3 |
+
"train_loss": 0.242632052937492,
|
4 |
+
"train_runtime": 627.3825,
|
5 |
"train_samples": 3638,
|
6 |
+
"train_samples_per_second": 115.974,
|
7 |
+
"train_steps_per_second": 3.889
|
8 |
}
|
trainer_state.json
CHANGED
@@ -10,392 +10,392 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
-
"grad_norm": 4.
|
14 |
"learning_rate": 4.75e-05,
|
15 |
"loss": 0.5535,
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
-
"eval_accuracy": 0.
|
21 |
-
"eval_f1": 0.
|
22 |
-
"eval_loss": 0.
|
23 |
-
"eval_precision": 0.
|
24 |
-
"eval_recall": 0.
|
25 |
-
"eval_runtime":
|
26 |
-
"eval_samples_per_second":
|
27 |
-
"eval_steps_per_second":
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
-
"grad_norm": 3.
|
33 |
"learning_rate": 4.5e-05,
|
34 |
-
"loss": 0.
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
-
"eval_accuracy": 0.
|
40 |
-
"eval_f1": 0.
|
41 |
-
"eval_loss": 0.
|
42 |
-
"eval_precision": 0.
|
43 |
-
"eval_recall": 0.
|
44 |
-
"eval_runtime":
|
45 |
-
"eval_samples_per_second":
|
46 |
-
"eval_steps_per_second":
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
-
"grad_norm": 3.
|
52 |
"learning_rate": 4.25e-05,
|
53 |
-
"loss": 0.
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
-
"eval_accuracy": 0.
|
59 |
-
"eval_f1": 0.
|
60 |
-
"eval_loss": 0.
|
61 |
-
"eval_precision": 0.
|
62 |
-
"eval_recall": 0.
|
63 |
-
"eval_runtime":
|
64 |
-
"eval_samples_per_second":
|
65 |
-
"eval_steps_per_second":
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
-
"grad_norm":
|
71 |
"learning_rate": 4e-05,
|
72 |
-
"loss": 0.
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
-
"eval_accuracy": 0.
|
78 |
-
"eval_f1": 0.
|
79 |
-
"eval_loss": 0.
|
80 |
-
"eval_precision": 0.
|
81 |
-
"eval_recall": 0.
|
82 |
-
"eval_runtime":
|
83 |
-
"eval_samples_per_second":
|
84 |
-
"eval_steps_per_second":
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
-
"grad_norm":
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
-
"loss": 0.
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
-
"eval_accuracy": 0.
|
97 |
-
"eval_f1": 0.
|
98 |
-
"eval_loss": 0.
|
99 |
-
"eval_precision": 0.
|
100 |
-
"eval_recall": 0.
|
101 |
-
"eval_runtime":
|
102 |
-
"eval_samples_per_second":
|
103 |
-
"eval_steps_per_second":
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
-
"grad_norm":
|
109 |
"learning_rate": 3.5e-05,
|
110 |
-
"loss": 0.
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
-
"eval_accuracy": 0.
|
116 |
-
"eval_f1": 0.
|
117 |
-
"eval_loss": 0.
|
118 |
-
"eval_precision": 0.
|
119 |
-
"eval_recall": 0.
|
120 |
-
"eval_runtime":
|
121 |
-
"eval_samples_per_second":
|
122 |
-
"eval_steps_per_second":
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
-
"grad_norm":
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
-
"loss": 0.
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
-
"eval_accuracy": 0.
|
135 |
-
"eval_f1": 0.
|
136 |
-
"eval_loss": 0.
|
137 |
-
"eval_precision": 0.
|
138 |
-
"eval_recall": 0.
|
139 |
-
"eval_runtime":
|
140 |
-
"eval_samples_per_second":
|
141 |
-
"eval_steps_per_second":
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
-
"grad_norm":
|
147 |
"learning_rate": 3e-05,
|
148 |
-
"loss": 0.
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
-
"eval_accuracy": 0.
|
154 |
-
"eval_f1": 0.
|
155 |
-
"eval_loss": 0.
|
156 |
-
"eval_precision": 0.
|
157 |
-
"eval_recall": 0.
|
158 |
-
"eval_runtime":
|
159 |
-
"eval_samples_per_second":
|
160 |
-
"eval_steps_per_second":
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
-
"grad_norm": 6.
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
-
"loss": 0.
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
-
"eval_accuracy": 0.
|
173 |
-
"eval_f1": 0.
|
174 |
-
"eval_loss": 0.
|
175 |
-
"eval_precision": 0.
|
176 |
-
"eval_recall": 0.
|
177 |
-
"eval_runtime":
|
178 |
-
"eval_samples_per_second":
|
179 |
-
"eval_steps_per_second":
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
-
"grad_norm": 3.
|
185 |
"learning_rate": 2.5e-05,
|
186 |
-
"loss": 0.
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
-
"eval_accuracy": 0.
|
192 |
-
"eval_f1": 0.
|
193 |
-
"eval_loss": 0.
|
194 |
-
"eval_precision": 0.
|
195 |
-
"eval_recall": 0.
|
196 |
-
"eval_runtime":
|
197 |
-
"eval_samples_per_second":
|
198 |
-
"eval_steps_per_second":
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
-
"grad_norm":
|
204 |
"learning_rate": 2.25e-05,
|
205 |
-
"loss": 0.
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
-
"eval_accuracy": 0.
|
211 |
-
"eval_f1": 0.
|
212 |
-
"eval_loss": 0.
|
213 |
-
"eval_precision": 0.
|
214 |
-
"eval_recall": 0.
|
215 |
-
"eval_runtime":
|
216 |
-
"eval_samples_per_second":
|
217 |
-
"eval_steps_per_second":
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
-
"grad_norm":
|
223 |
"learning_rate": 2e-05,
|
224 |
-
"loss": 0.
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
-
"eval_accuracy": 0.
|
230 |
-
"eval_f1": 0.
|
231 |
-
"eval_loss": 0.
|
232 |
-
"eval_precision": 0.
|
233 |
-
"eval_recall": 0.
|
234 |
-
"eval_runtime":
|
235 |
-
"eval_samples_per_second":
|
236 |
-
"eval_steps_per_second":
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
-
"grad_norm": 1.
|
242 |
"learning_rate": 1.75e-05,
|
243 |
-
"loss": 0.
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
"eval_accuracy": 0.8796992481203008,
|
249 |
-
"eval_f1": 0.
|
250 |
-
"eval_loss": 0.
|
251 |
-
"eval_precision": 0.
|
252 |
-
"eval_recall": 0.
|
253 |
-
"eval_runtime":
|
254 |
-
"eval_samples_per_second":
|
255 |
-
"eval_steps_per_second":
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
-
"grad_norm":
|
261 |
"learning_rate": 1.5e-05,
|
262 |
-
"loss": 0.
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
-
"eval_accuracy": 0.
|
268 |
-
"eval_f1": 0.
|
269 |
-
"eval_loss": 0.
|
270 |
-
"eval_precision": 0.
|
271 |
-
"eval_recall": 0.
|
272 |
-
"eval_runtime":
|
273 |
-
"eval_samples_per_second":
|
274 |
-
"eval_steps_per_second":
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
-
"grad_norm":
|
280 |
"learning_rate": 1.25e-05,
|
281 |
-
"loss": 0.
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
-
"eval_accuracy": 0.
|
287 |
-
"eval_f1": 0.
|
288 |
-
"eval_loss": 0.
|
289 |
-
"eval_precision": 0.
|
290 |
-
"eval_recall": 0.
|
291 |
-
"eval_runtime":
|
292 |
-
"eval_samples_per_second":
|
293 |
-
"eval_steps_per_second":
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
-
"grad_norm":
|
299 |
"learning_rate": 1e-05,
|
300 |
-
"loss": 0.
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
-
"eval_accuracy": 0.
|
306 |
-
"eval_f1": 0.
|
307 |
-
"eval_loss": 0.
|
308 |
-
"eval_precision": 0.
|
309 |
-
"eval_recall": 0.
|
310 |
-
"eval_runtime":
|
311 |
-
"eval_samples_per_second":
|
312 |
-
"eval_steps_per_second":
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
-
"grad_norm": 1.
|
318 |
"learning_rate": 7.5e-06,
|
319 |
-
"loss": 0.
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
-
"eval_accuracy": 0.
|
325 |
-
"eval_f1": 0.
|
326 |
-
"eval_loss": 0.
|
327 |
-
"eval_precision": 0.
|
328 |
-
"eval_recall": 0.
|
329 |
-
"eval_runtime":
|
330 |
-
"eval_samples_per_second":
|
331 |
-
"eval_steps_per_second":
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
-
"grad_norm":
|
337 |
"learning_rate": 5e-06,
|
338 |
-
"loss": 0.
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
-
"eval_accuracy": 0.
|
344 |
-
"eval_f1": 0.
|
345 |
-
"eval_loss": 0.
|
346 |
-
"eval_precision": 0.
|
347 |
-
"eval_recall": 0.
|
348 |
-
"eval_runtime":
|
349 |
-
"eval_samples_per_second":
|
350 |
-
"eval_steps_per_second":
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
-
"grad_norm":
|
356 |
"learning_rate": 2.5e-06,
|
357 |
-
"loss": 0.
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
-
"eval_accuracy": 0.
|
363 |
-
"eval_f1": 0.
|
364 |
-
"eval_loss": 0.
|
365 |
-
"eval_precision": 0.
|
366 |
-
"eval_recall": 0.
|
367 |
-
"eval_runtime":
|
368 |
-
"eval_samples_per_second":
|
369 |
-
"eval_steps_per_second":
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
-
"grad_norm": 1.
|
375 |
"learning_rate": 0.0,
|
376 |
-
"loss": 0.
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
-
"eval_accuracy": 0.
|
382 |
-
"eval_f1": 0.
|
383 |
-
"eval_loss": 0.
|
384 |
-
"eval_precision": 0.
|
385 |
-
"eval_recall": 0.
|
386 |
-
"eval_runtime":
|
387 |
-
"eval_samples_per_second":
|
388 |
-
"eval_steps_per_second":
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 8444128359504000.0,
|
395 |
-
"train_loss": 0.
|
396 |
-
"train_runtime":
|
397 |
-
"train_samples_per_second":
|
398 |
-
"train_steps_per_second":
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
+
"grad_norm": 4.5641188621521,
|
14 |
"learning_rate": 4.75e-05,
|
15 |
"loss": 0.5535,
|
16 |
"step": 122
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
+
"eval_accuracy": 0.7243107769423559,
|
21 |
+
"eval_f1": 0.6401043033324587,
|
22 |
+
"eval_loss": 0.5041041374206543,
|
23 |
+
"eval_precision": 0.6583725987676694,
|
24 |
+
"eval_recall": 0.6324331696672122,
|
25 |
+
"eval_runtime": 1.8214,
|
26 |
+
"eval_samples_per_second": 219.06,
|
27 |
+
"eval_steps_per_second": 27.451,
|
28 |
"step": 122
|
29 |
},
|
30 |
{
|
31 |
"epoch": 2.0,
|
32 |
+
"grad_norm": 3.286947011947632,
|
33 |
"learning_rate": 4.5e-05,
|
34 |
+
"loss": 0.4636,
|
35 |
"step": 244
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.7669172932330827,
|
40 |
+
"eval_f1": 0.7331142070096449,
|
41 |
+
"eval_loss": 0.4692240059375763,
|
42 |
+
"eval_precision": 0.7252895752895754,
|
43 |
+
"eval_recall": 0.7475904709947263,
|
44 |
+
"eval_runtime": 1.8328,
|
45 |
+
"eval_samples_per_second": 217.703,
|
46 |
+
"eval_steps_per_second": 27.281,
|
47 |
"step": 244
|
48 |
},
|
49 |
{
|
50 |
"epoch": 3.0,
|
51 |
+
"grad_norm": 3.800495147705078,
|
52 |
"learning_rate": 4.25e-05,
|
53 |
+
"loss": 0.4023,
|
54 |
"step": 366
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.8370927318295739,
|
59 |
+
"eval_f1": 0.7809488416091623,
|
60 |
+
"eval_loss": 0.36048197746276855,
|
61 |
+
"eval_precision": 0.832562695924765,
|
62 |
+
"eval_recall": 0.7572285870158211,
|
63 |
+
"eval_runtime": 1.8261,
|
64 |
+
"eval_samples_per_second": 218.495,
|
65 |
+
"eval_steps_per_second": 27.38,
|
66 |
"step": 366
|
67 |
},
|
68 |
{
|
69 |
"epoch": 4.0,
|
70 |
+
"grad_norm": 4.0396647453308105,
|
71 |
"learning_rate": 4e-05,
|
72 |
+
"loss": 0.3202,
|
73 |
"step": 488
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
+
"eval_accuracy": 0.8546365914786967,
|
78 |
+
"eval_f1": 0.8159125620465827,
|
79 |
+
"eval_loss": 0.3256481885910034,
|
80 |
+
"eval_precision": 0.8356565656565657,
|
81 |
+
"eval_recall": 0.8021458446990362,
|
82 |
+
"eval_runtime": 1.8317,
|
83 |
+
"eval_samples_per_second": 217.825,
|
84 |
+
"eval_steps_per_second": 27.296,
|
85 |
"step": 488
|
86 |
},
|
87 |
{
|
88 |
"epoch": 5.0,
|
89 |
+
"grad_norm": 1.8746237754821777,
|
90 |
"learning_rate": 3.7500000000000003e-05,
|
91 |
+
"loss": 0.2919,
|
92 |
"step": 610
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
+
"eval_accuracy": 0.8771929824561403,
|
97 |
+
"eval_f1": 0.8475258334958082,
|
98 |
+
"eval_loss": 0.3067488968372345,
|
99 |
+
"eval_precision": 0.8591828192414193,
|
100 |
+
"eval_recall": 0.8381069285324605,
|
101 |
+
"eval_runtime": 1.8315,
|
102 |
+
"eval_samples_per_second": 217.857,
|
103 |
+
"eval_steps_per_second": 27.3,
|
104 |
"step": 610
|
105 |
},
|
106 |
{
|
107 |
"epoch": 6.0,
|
108 |
+
"grad_norm": 3.942033290863037,
|
109 |
"learning_rate": 3.5e-05,
|
110 |
+
"loss": 0.2657,
|
111 |
"step": 732
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
+
"eval_accuracy": 0.8521303258145363,
|
116 |
+
"eval_f1": 0.8320383569853806,
|
117 |
+
"eval_loss": 0.3400041460990906,
|
118 |
+
"eval_precision": 0.8193218954248366,
|
119 |
+
"eval_recall": 0.8553827968721586,
|
120 |
+
"eval_runtime": 1.8306,
|
121 |
+
"eval_samples_per_second": 217.958,
|
122 |
+
"eval_steps_per_second": 27.313,
|
123 |
"step": 732
|
124 |
},
|
125 |
{
|
126 |
"epoch": 7.0,
|
127 |
+
"grad_norm": 0.39800548553466797,
|
128 |
"learning_rate": 3.2500000000000004e-05,
|
129 |
+
"loss": 0.2559,
|
130 |
"step": 854
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
+
"eval_accuracy": 0.87468671679198,
|
135 |
+
"eval_f1": 0.8524146298159436,
|
136 |
+
"eval_loss": 0.2993007302284241,
|
137 |
+
"eval_precision": 0.8451250578971746,
|
138 |
+
"eval_recall": 0.8613384251682124,
|
139 |
+
"eval_runtime": 1.8316,
|
140 |
+
"eval_samples_per_second": 217.847,
|
141 |
+
"eval_steps_per_second": 27.299,
|
142 |
"step": 854
|
143 |
},
|
144 |
{
|
145 |
"epoch": 8.0,
|
146 |
+
"grad_norm": 7.434815406799316,
|
147 |
"learning_rate": 3e-05,
|
148 |
+
"loss": 0.2369,
|
149 |
"step": 976
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
+
"eval_accuracy": 0.8872180451127819,
|
154 |
+
"eval_f1": 0.8584001703456596,
|
155 |
+
"eval_loss": 0.30177775025367737,
|
156 |
+
"eval_precision": 0.8759655377302435,
|
157 |
+
"eval_recall": 0.8451991271140207,
|
158 |
+
"eval_runtime": 1.8332,
|
159 |
+
"eval_samples_per_second": 217.658,
|
160 |
+
"eval_steps_per_second": 27.275,
|
161 |
"step": 976
|
162 |
},
|
163 |
{
|
164 |
"epoch": 9.0,
|
165 |
+
"grad_norm": 6.123136043548584,
|
166 |
"learning_rate": 2.7500000000000004e-05,
|
167 |
+
"loss": 0.2178,
|
168 |
"step": 1098
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
+
"eval_accuracy": 0.8847117794486216,
|
173 |
+
"eval_f1": 0.8595070422535211,
|
174 |
+
"eval_loss": 0.29259544610977173,
|
175 |
+
"eval_precision": 0.8633733523114054,
|
176 |
+
"eval_recall": 0.8559283506092017,
|
177 |
+
"eval_runtime": 1.8408,
|
178 |
+
"eval_samples_per_second": 216.759,
|
179 |
+
"eval_steps_per_second": 27.163,
|
180 |
"step": 1098
|
181 |
},
|
182 |
{
|
183 |
"epoch": 10.0,
|
184 |
+
"grad_norm": 3.8655648231506348,
|
185 |
"learning_rate": 2.5e-05,
|
186 |
+
"loss": 0.2118,
|
187 |
"step": 1220
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
+
"eval_accuracy": 0.8872180451127819,
|
192 |
+
"eval_f1": 0.8622036668943447,
|
193 |
+
"eval_loss": 0.29553094506263733,
|
194 |
+
"eval_precision": 0.8671602787456446,
|
195 |
+
"eval_recall": 0.8577014002545917,
|
196 |
+
"eval_runtime": 1.8333,
|
197 |
+
"eval_samples_per_second": 217.636,
|
198 |
+
"eval_steps_per_second": 27.273,
|
199 |
"step": 1220
|
200 |
},
|
201 |
{
|
202 |
"epoch": 11.0,
|
203 |
+
"grad_norm": 3.4139134883880615,
|
204 |
"learning_rate": 2.25e-05,
|
205 |
+
"loss": 0.2034,
|
206 |
"step": 1342
|
207 |
},
|
208 |
{
|
209 |
"epoch": 11.0,
|
210 |
+
"eval_accuracy": 0.8847117794486216,
|
211 |
+
"eval_f1": 0.8572517421602788,
|
212 |
+
"eval_loss": 0.2934134602546692,
|
213 |
+
"eval_precision": 0.8679426449878376,
|
214 |
+
"eval_recall": 0.8484269867248591,
|
215 |
+
"eval_runtime": 1.8401,
|
216 |
+
"eval_samples_per_second": 216.837,
|
217 |
+
"eval_steps_per_second": 27.173,
|
218 |
"step": 1342
|
219 |
},
|
220 |
{
|
221 |
"epoch": 12.0,
|
222 |
+
"grad_norm": 5.207653045654297,
|
223 |
"learning_rate": 2e-05,
|
224 |
+
"loss": 0.1856,
|
225 |
"step": 1464
|
226 |
},
|
227 |
{
|
228 |
"epoch": 12.0,
|
229 |
+
"eval_accuracy": 0.8796992481203008,
|
230 |
+
"eval_f1": 0.8533986527862829,
|
231 |
+
"eval_loss": 0.297758549451828,
|
232 |
+
"eval_precision": 0.8572003218020917,
|
233 |
+
"eval_recall": 0.8498817966903074,
|
234 |
+
"eval_runtime": 1.8319,
|
235 |
+
"eval_samples_per_second": 217.802,
|
236 |
+
"eval_steps_per_second": 27.293,
|
237 |
"step": 1464
|
238 |
},
|
239 |
{
|
240 |
"epoch": 13.0,
|
241 |
+
"grad_norm": 1.1223020553588867,
|
242 |
"learning_rate": 1.75e-05,
|
243 |
+
"loss": 0.1775,
|
244 |
"step": 1586
|
245 |
},
|
246 |
{
|
247 |
"epoch": 13.0,
|
248 |
"eval_accuracy": 0.8796992481203008,
|
249 |
+
"eval_f1": 0.8493865995596099,
|
250 |
+
"eval_loss": 0.3038978576660156,
|
251 |
+
"eval_precision": 0.8651108632904749,
|
252 |
+
"eval_recall": 0.8373795235497363,
|
253 |
+
"eval_runtime": 1.8374,
|
254 |
+
"eval_samples_per_second": 217.149,
|
255 |
+
"eval_steps_per_second": 27.212,
|
256 |
"step": 1586
|
257 |
},
|
258 |
{
|
259 |
"epoch": 14.0,
|
260 |
+
"grad_norm": 7.688318252563477,
|
261 |
"learning_rate": 1.5e-05,
|
262 |
+
"loss": 0.1719,
|
263 |
"step": 1708
|
264 |
},
|
265 |
{
|
266 |
"epoch": 14.0,
|
267 |
+
"eval_accuracy": 0.8872180451127819,
|
268 |
+
"eval_f1": 0.8622036668943447,
|
269 |
+
"eval_loss": 0.3036334812641144,
|
270 |
+
"eval_precision": 0.8671602787456446,
|
271 |
+
"eval_recall": 0.8577014002545917,
|
272 |
+
"eval_runtime": 1.8354,
|
273 |
+
"eval_samples_per_second": 217.392,
|
274 |
+
"eval_steps_per_second": 27.242,
|
275 |
"step": 1708
|
276 |
},
|
277 |
{
|
278 |
"epoch": 15.0,
|
279 |
+
"grad_norm": 1.8339260816574097,
|
280 |
"learning_rate": 1.25e-05,
|
281 |
+
"loss": 0.1621,
|
282 |
"step": 1830
|
283 |
},
|
284 |
{
|
285 |
"epoch": 15.0,
|
286 |
+
"eval_accuracy": 0.8822055137844611,
|
287 |
+
"eval_f1": 0.8596342841745197,
|
288 |
+
"eval_loss": 0.299029141664505,
|
289 |
+
"eval_precision": 0.8555364857667042,
|
290 |
+
"eval_recall": 0.8641571194762684,
|
291 |
+
"eval_runtime": 1.8346,
|
292 |
+
"eval_samples_per_second": 217.487,
|
293 |
+
"eval_steps_per_second": 27.254,
|
294 |
"step": 1830
|
295 |
},
|
296 |
{
|
297 |
"epoch": 16.0,
|
298 |
+
"grad_norm": 1.4192665815353394,
|
299 |
"learning_rate": 1e-05,
|
300 |
+
"loss": 0.1535,
|
301 |
"step": 1952
|
302 |
},
|
303 |
{
|
304 |
"epoch": 16.0,
|
305 |
+
"eval_accuracy": 0.8847117794486216,
|
306 |
+
"eval_f1": 0.8616171059774413,
|
307 |
+
"eval_loss": 0.3039585053920746,
|
308 |
+
"eval_precision": 0.859873949579832,
|
309 |
+
"eval_recall": 0.8634297144935443,
|
310 |
+
"eval_runtime": 1.8339,
|
311 |
+
"eval_samples_per_second": 217.57,
|
312 |
+
"eval_steps_per_second": 27.264,
|
313 |
"step": 1952
|
314 |
},
|
315 |
{
|
316 |
"epoch": 17.0,
|
317 |
+
"grad_norm": 1.2236837148666382,
|
318 |
"learning_rate": 7.5e-06,
|
319 |
+
"loss": 0.1504,
|
320 |
"step": 2074
|
321 |
},
|
322 |
{
|
323 |
"epoch": 17.0,
|
324 |
+
"eval_accuracy": 0.8796992481203008,
|
325 |
+
"eval_f1": 0.8510452961672474,
|
326 |
+
"eval_loss": 0.31895172595977783,
|
327 |
+
"eval_precision": 0.8615574190244527,
|
328 |
+
"eval_recall": 0.8423804328059648,
|
329 |
+
"eval_runtime": 1.8322,
|
330 |
+
"eval_samples_per_second": 217.776,
|
331 |
+
"eval_steps_per_second": 27.29,
|
332 |
"step": 2074
|
333 |
},
|
334 |
{
|
335 |
"epoch": 18.0,
|
336 |
+
"grad_norm": 1.8861066102981567,
|
337 |
"learning_rate": 5e-06,
|
338 |
+
"loss": 0.1459,
|
339 |
"step": 2196
|
340 |
},
|
341 |
{
|
342 |
"epoch": 18.0,
|
343 |
+
"eval_accuracy": 0.8771929824561403,
|
344 |
+
"eval_f1": 0.8522278069611882,
|
345 |
+
"eval_loss": 0.31010520458221436,
|
346 |
+
"eval_precision": 0.8513631702756499,
|
347 |
+
"eval_recall": 0.8531096563011457,
|
348 |
+
"eval_runtime": 1.8303,
|
349 |
+
"eval_samples_per_second": 217.993,
|
350 |
+
"eval_steps_per_second": 27.317,
|
351 |
"step": 2196
|
352 |
},
|
353 |
{
|
354 |
"epoch": 19.0,
|
355 |
+
"grad_norm": 2.291304349899292,
|
356 |
"learning_rate": 2.5e-06,
|
357 |
+
"loss": 0.1444,
|
358 |
"step": 2318
|
359 |
},
|
360 |
{
|
361 |
"epoch": 19.0,
|
362 |
+
"eval_accuracy": 0.8822055137844611,
|
363 |
+
"eval_f1": 0.855319904024935,
|
364 |
+
"eval_loss": 0.3119203448295593,
|
365 |
+
"eval_precision": 0.862378106322743,
|
366 |
+
"eval_recall": 0.8491543917075832,
|
367 |
+
"eval_runtime": 1.8361,
|
368 |
+
"eval_samples_per_second": 217.305,
|
369 |
+
"eval_steps_per_second": 27.231,
|
370 |
"step": 2318
|
371 |
},
|
372 |
{
|
373 |
"epoch": 20.0,
|
374 |
+
"grad_norm": 1.763808250427246,
|
375 |
"learning_rate": 0.0,
|
376 |
+
"loss": 0.1384,
|
377 |
"step": 2440
|
378 |
},
|
379 |
{
|
380 |
"epoch": 20.0,
|
381 |
+
"eval_accuracy": 0.8847117794486216,
|
382 |
+
"eval_f1": 0.8609292598654301,
|
383 |
+
"eval_loss": 0.3090469241142273,
|
384 |
+
"eval_precision": 0.8609292598654301,
|
385 |
+
"eval_recall": 0.8609292598654301,
|
386 |
+
"eval_runtime": 1.8381,
|
387 |
+
"eval_samples_per_second": 217.076,
|
388 |
+
"eval_steps_per_second": 27.203,
|
389 |
"step": 2440
|
390 |
},
|
391 |
{
|
392 |
"epoch": 20.0,
|
393 |
"step": 2440,
|
394 |
"total_flos": 8444128359504000.0,
|
395 |
+
"train_loss": 0.242632052937492,
|
396 |
+
"train_runtime": 627.3825,
|
397 |
+
"train_samples_per_second": 115.974,
|
398 |
+
"train_steps_per_second": 3.889
|
399 |
}
|
400 |
],
|
401 |
"logging_steps": 500,
|