--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-pt-pl20-1 results: [] --- # sentiment-pt-pl20-1 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2937 - Accuracy: 0.8822 - Precision: 0.8574 - Recall: 0.8592 - F1: 0.8583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5467 | 1.0 | 122 | 0.4994 | 0.7444 | 0.6878 | 0.6466 | 0.6574 | | 0.4498 | 2.0 | 244 | 0.4013 | 0.7970 | 0.7568 | 0.7764 | 0.7646 | | 0.3643 | 3.0 | 366 | 0.3603 | 0.8296 | 0.8252 | 0.7444 | 0.7685 | | 0.3131 | 4.0 | 488 | 0.3134 | 0.8546 | 0.8357 | 0.8021 | 0.8159 | | 0.2812 | 5.0 | 610 | 0.3087 | 0.8672 | 0.8463 | 0.8260 | 0.8351 | | 0.2579 | 6.0 | 732 | 0.3037 | 0.8747 | 0.8443 | 0.8663 | 0.8537 | | 0.242 | 7.0 | 854 | 0.2869 | 0.8772 | 0.8514 | 0.8531 | 0.8522 | | 0.2238 | 8.0 | 976 | 0.3086 | 0.8622 | 0.8488 | 0.8075 | 0.8239 | | 0.2134 | 9.0 | 1098 | 0.2916 | 0.8697 | 0.8520 | 0.8253 | 0.8368 | | 0.2014 | 10.0 | 1220 | 0.3077 | 0.8697 | 0.8579 | 0.8178 | 0.8340 | | 0.1918 | 11.0 | 1342 | 0.2910 | 0.8672 | 0.8385 | 0.8435 | 0.8409 | | 0.1764 | 12.0 | 1464 | 0.2865 | 0.8797 | 0.8530 | 0.8599 | 0.8563 | | 0.1771 | 13.0 | 1586 | 0.3068 | 0.8697 | 0.8520 | 0.8253 | 0.8368 | | 0.1708 | 14.0 | 1708 | 0.2962 | 0.8872 | 0.8587 | 0.8802 | 0.8681 | | 0.1585 | 15.0 | 1830 | 0.2889 | 0.8872 | 0.8645 | 0.8627 | 0.8636 | | 0.1602 | 16.0 | 1952 | 0.2941 | 0.8822 | 0.8541 | 0.8692 | 0.8609 | | 0.1481 | 17.0 | 2074 | 0.2971 | 0.8847 | 0.8634 | 0.8559 | 0.8595 | | 0.1536 | 18.0 | 2196 | 0.2937 | 0.8847 | 0.8621 | 0.8584 | 0.8602 | | 0.147 | 19.0 | 2318 | 0.2946 | 0.8822 | 0.8596 | 0.8542 | 0.8568 | | 0.1379 | 20.0 | 2440 | 0.2937 | 0.8822 | 0.8574 | 0.8592 | 0.8583 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2