--- language: - id license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-pt-pl5-0 results: [] --- # sentiment-pt-pl5-0 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3123 - Accuracy: 0.8822 - Precision: 0.8548 - Recall: 0.8667 - F1: 0.8603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5463 | 1.0 | 122 | 0.4832 | 0.7419 | 0.6850 | 0.6698 | 0.6759 | | 0.4591 | 2.0 | 244 | 0.4429 | 0.7519 | 0.7323 | 0.7770 | 0.7338 | | 0.3761 | 3.0 | 366 | 0.3485 | 0.8421 | 0.8113 | 0.8033 | 0.8071 | | 0.3183 | 4.0 | 488 | 0.3375 | 0.8521 | 0.8228 | 0.8179 | 0.8203 | | 0.2811 | 5.0 | 610 | 0.3170 | 0.8571 | 0.8260 | 0.8339 | 0.8298 | | 0.2593 | 6.0 | 732 | 0.3106 | 0.8722 | 0.8413 | 0.8646 | 0.8511 | | 0.2372 | 7.0 | 854 | 0.3502 | 0.8471 | 0.8147 | 0.8543 | 0.8277 | | 0.2287 | 8.0 | 976 | 0.2938 | 0.8922 | 0.8873 | 0.8462 | 0.8631 | | 0.2109 | 9.0 | 1098 | 0.2922 | 0.8797 | 0.8496 | 0.8749 | 0.8602 | | 0.2025 | 10.0 | 1220 | 0.2650 | 0.8822 | 0.8574 | 0.8592 | 0.8583 | | 0.1918 | 11.0 | 1342 | 0.3182 | 0.8772 | 0.8463 | 0.8806 | 0.8594 | | 0.1807 | 12.0 | 1464 | 0.2841 | 0.8947 | 0.8676 | 0.8880 | 0.8766 | | 0.1751 | 13.0 | 1586 | 0.2675 | 0.8922 | 0.8683 | 0.8737 | 0.8710 | | 0.1724 | 14.0 | 1708 | 0.2957 | 0.8847 | 0.8573 | 0.8709 | 0.8636 | | 0.1502 | 15.0 | 1830 | 0.3010 | 0.8822 | 0.8541 | 0.8692 | 0.8609 | | 0.1469 | 16.0 | 1952 | 0.3227 | 0.8872 | 0.8583 | 0.8827 | 0.8687 | | 0.1457 | 17.0 | 2074 | 0.3037 | 0.8822 | 0.8541 | 0.8692 | 0.8609 | | 0.1453 | 18.0 | 2196 | 0.3064 | 0.8822 | 0.8555 | 0.8642 | 0.8596 | | 0.1402 | 19.0 | 2318 | 0.3092 | 0.8797 | 0.8530 | 0.8599 | 0.8563 | | 0.1301 | 20.0 | 2440 | 0.3123 | 0.8822 | 0.8548 | 0.8667 | 0.8603 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1