File size: 1,981 Bytes
65144f2
5bcbc4c
 
65144f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cf664e
5bcbc4c
65144f2
5bcbc4c
 
65144f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178f66f
 
65144f2
 
 
 
 
 
 
 
 
 
7cf664e
 
 
 
 
65144f2
 
 
 
 
178f66f
 
65144f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
language:
- id
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: summarization-lora-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# summarization-lora-1

This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5019
- Rouge1: 0.4829
- Rouge2: 0.0
- Rougel: 0.4847
- Rougelsum: 0.48
- Gen Len: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.7782        | 1.0   | 892  | 0.5458          | 0.7706 | 0.0    | 0.7715 | 0.7691    | 1.0     |
| 0.5952        | 2.0   | 1784 | 0.5551          | 0.7627 | 0.0    | 0.7591 | 0.7596    | 1.0     |
| 0.551         | 3.0   | 2676 | 0.5163          | 0.7617 | 0.0    | 0.761  | 0.7609    | 1.0     |
| 0.5236        | 4.0   | 3568 | 0.5064          | 0.7569 | 0.0    | 0.7553 | 0.7552    | 1.0     |
| 0.5009        | 5.0   | 4460 | 0.5019          | 0.762  | 0.0    | 0.7611 | 0.7586    | 1.0     |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1