File size: 1,977 Bytes
f3ba3ae 72d6e10 f3ba3ae 0759e50 72d6e10 f3ba3ae 72d6e10 f3ba3ae 0759e50 f3ba3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
language:
- id
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: summarization-pt-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# summarization-pt-4
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2774
- Rouge1: 0.403
- Rouge2: 0.0
- Rougel: 0.4021
- Rougelsum: 0.405
- Gen Len: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 3.0347 | 1.0 | 892 | 2.0002 | 0.6717 | 0.0 | 0.6744 | 0.6696 | 1.0 |
| 2.4012 | 2.0 | 1784 | 1.7296 | 0.7117 | 0.0 | 0.7105 | 0.7111 | 1.0 |
| 2.1461 | 3.0 | 2676 | 1.4790 | 0.6953 | 0.0 | 0.6922 | 0.6902 | 1.0 |
| 1.952 | 4.0 | 3568 | 1.3589 | 0.6758 | 0.0 | 0.6753 | 0.6736 | 1.0 |
| 1.8052 | 5.0 | 4460 | 1.2774 | 0.6685 | 0.0 | 0.6677 | 0.6651 | 1.0 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|