--- license: apache-2.0 base_model: LazarusNLP/IndoNanoT5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: summarization-seq_bn-3 results: [] --- # summarization-seq_bn-3 This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5113 - Rouge1: 0.663 - Rouge2: 0.0 - Rougel: 0.6623 - Rougelsum: 0.6589 - Gen Len: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.7757 | 1.0 | 892 | 0.5546 | 0.6666 | 0.0 | 0.6657 | 0.6687 | 1.0 | | 0.6033 | 2.0 | 1784 | 0.5361 | 0.6576 | 0.0 | 0.6553 | 0.6594 | 1.0 | | 0.5534 | 3.0 | 2676 | 0.5343 | 0.6895 | 0.0 | 0.6885 | 0.6892 | 1.0 | | 0.5156 | 4.0 | 3568 | 0.5145 | 0.6609 | 0.0 | 0.6612 | 0.6631 | 1.0 | | 0.4866 | 5.0 | 4460 | 0.5113 | 0.663 | 0.0 | 0.6623 | 0.6589 | 1.0 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1