aradootle ybelkada commited on
Commit
5d0eb5a
0 Parent(s):

Duplicate from facebook/sam-vit-base

Browse files

Co-authored-by: Younes Belkada <[email protected]>

Files changed (6) hide show
  1. .gitattributes +34 -0
  2. README.md +120 -0
  3. config.json +249 -0
  4. preprocessor_config.json +28 -0
  5. pytorch_model.bin +3 -0
  6. tf_model.h5 +3 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ duplicated_from: facebook/sam-vit-base
4
+ ---
5
+
6
+ # Model Card for Segment Anything Model (SAM) - ViT Base (ViT-B) version
7
+
8
+ <p>
9
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-architecture.png" alt="Model architecture">
10
+ <em> Detailed architecture of Segment Anything Model (SAM).</em>
11
+ </p>
12
+
13
+
14
+ # Table of Contents
15
+
16
+ 0. [TL;DR](#TL;DR)
17
+ 1. [Model Details](#model-details)
18
+ 2. [Usage](#usage)
19
+ 3. [Citation](#citation)
20
+
21
+ # TL;DR
22
+
23
+
24
+ [Link to original repository](https://github.com/facebookresearch/segment-anything)
25
+
26
+ | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-beancans.png" alt="Snow" width="600" height="600"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-dog-masks.png" alt="Forest" width="600" height="600"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car-seg.png" alt="Mountains" width="600" height="600"> |
27
+ |---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
28
+
29
+
30
+ The **Segment Anything Model (SAM)** produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. It has been trained on a [dataset](https://segment-anything.com/dataset/index.html) of 11 million images and 1.1 billion masks, and has strong zero-shot performance on a variety of segmentation tasks.
31
+ The abstract of the paper states:
32
+
33
+ > We introduce the Segment Anything (SA) project: a new task, model, and dataset for image segmentation. Using our efficient model in a data collection loop, we built the largest segmentation dataset to date (by far), with over 1 billion masks on 11M licensed and privacy respecting images. The model is designed and trained to be promptable, so it can transfer zero-shot to new image distributions and tasks. We evaluate its capabilities on numerous tasks and find that its zero-shot performance is impressive -- often competitive with or even superior to prior fully supervised results. We are releasing the Segment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and 11M images at [https://segment-anything.com](https://segment-anything.com) to foster research into foundation models for computer vision.
34
+
35
+ **Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the original [SAM model card](https://github.com/facebookresearch/segment-anything).
36
+
37
+ # Model Details
38
+
39
+ The SAM model is made up of 3 modules:
40
+ - The `VisionEncoder`: a VIT based image encoder. It computes the image embeddings using attention on patches of the image. Relative Positional Embedding is used.
41
+ - The `PromptEncoder`: generates embeddings for points and bounding boxes
42
+ - The `MaskDecoder`: a two-ways transformer which performs cross attention between the image embedding and the point embeddings (->) and between the point embeddings and the image embeddings. The outputs are fed
43
+ - The `Neck`: predicts the output masks based on the contextualized masks produced by the `MaskDecoder`.
44
+ # Usage
45
+
46
+
47
+ ## Prompted-Mask-Generation
48
+
49
+ ```python
50
+ from PIL import Image
51
+ import requests
52
+ from transformers import SamModel, SamProcessor
53
+
54
+ model = SamModel.from_pretrained("facebook/sam-vit-base")
55
+ processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
56
+
57
+ img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
58
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
59
+ input_points = [[[450, 600]]] # 2D localization of a window
60
+ ```
61
+
62
+
63
+ ```python
64
+ inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to("cuda")
65
+ outputs = model(**inputs)
66
+ masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
67
+ scores = outputs.iou_scores
68
+ ```
69
+ Among other arguments to generate masks, you can pass 2D locations on the approximate position of your object of interest, a bounding box wrapping the object of interest (the format should be x, y coordinate of the top right and bottom left point of the bounding box), a segmentation mask. At this time of writing, passing a text as input is not supported by the official model according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844).
70
+ For more details, refer to this notebook, which shows a walk throught of how to use the model, with a visual example!
71
+
72
+ ## Automatic-Mask-Generation
73
+
74
+ The model can be used for generating segmentation masks in a "zero-shot" fashion, given an input image. The model is automatically prompt with a grid of `1024` points
75
+ which are all fed to the model.
76
+
77
+ The pipeline is made for automatic mask generation. The following snippet demonstrates how easy you can run it (on any device! Simply feed the appropriate `points_per_batch` argument)
78
+ ```python
79
+ from transformers import pipeline
80
+ generator = pipeline("mask-generation", device = 0, points_per_batch = 256)
81
+ image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
82
+ outputs = generator(image_url, points_per_batch = 256)
83
+ ```
84
+ Now to display the image:
85
+ ```python
86
+ import matplotlib.pyplot as plt
87
+ from PIL import Image
88
+ import numpy as np
89
+
90
+ def show_mask(mask, ax, random_color=False):
91
+ if random_color:
92
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
93
+ else:
94
+ color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
95
+ h, w = mask.shape[-2:]
96
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
97
+ ax.imshow(mask_image)
98
+
99
+
100
+ plt.imshow(np.array(raw_image))
101
+ ax = plt.gca()
102
+ for mask in outputs["masks"]:
103
+ show_mask(mask, ax=ax, random_color=True)
104
+ plt.axis("off")
105
+ plt.show()
106
+ ```
107
+
108
+
109
+ # Citation
110
+
111
+ If you use this model, please use the following BibTeX entry.
112
+
113
+ ```
114
+ @article{kirillov2023segany,
115
+ title={Segment Anything},
116
+ author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
117
+ journal={arXiv:2304.02643},
118
+ year={2023}
119
+ }
120
+ ```
config.json ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/tmp/facebook/sam-vit-base",
4
+ "architectures": [
5
+ "SamModel"
6
+ ],
7
+ "initializer_range": 0.02,
8
+ "mask_decoder_config": {
9
+ "_name_or_path": "",
10
+ "add_cross_attention": false,
11
+ "architectures": null,
12
+ "attention_downsample_rate": 2,
13
+ "bad_words_ids": null,
14
+ "begin_suppress_tokens": null,
15
+ "bos_token_id": null,
16
+ "chunk_size_feed_forward": 0,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": null,
24
+ "exponential_decay_length_penalty": null,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "hidden_act": "relu",
29
+ "hidden_size": 256,
30
+ "id2label": {
31
+ "0": "LABEL_0",
32
+ "1": "LABEL_1"
33
+ },
34
+ "iou_head_depth": 3,
35
+ "iou_head_hidden_dim": 256,
36
+ "is_decoder": false,
37
+ "is_encoder_decoder": false,
38
+ "label2id": {
39
+ "LABEL_0": 0,
40
+ "LABEL_1": 1
41
+ },
42
+ "layer_norm_eps": 1e-06,
43
+ "length_penalty": 1.0,
44
+ "max_length": 20,
45
+ "min_length": 0,
46
+ "mlp_dim": 2048,
47
+ "model_type": "",
48
+ "no_repeat_ngram_size": 0,
49
+ "num_attention_heads": 8,
50
+ "num_beam_groups": 1,
51
+ "num_beams": 1,
52
+ "num_hidden_layers": 2,
53
+ "num_multimask_outputs": 3,
54
+ "num_return_sequences": 1,
55
+ "output_attentions": false,
56
+ "output_hidden_states": false,
57
+ "output_scores": false,
58
+ "pad_token_id": null,
59
+ "prefix": null,
60
+ "problem_type": null,
61
+ "pruned_heads": {},
62
+ "remove_invalid_values": false,
63
+ "repetition_penalty": 1.0,
64
+ "return_dict": true,
65
+ "return_dict_in_generate": false,
66
+ "sep_token_id": null,
67
+ "suppress_tokens": null,
68
+ "task_specific_params": null,
69
+ "temperature": 1.0,
70
+ "tf_legacy_loss": false,
71
+ "tie_encoder_decoder": false,
72
+ "tie_word_embeddings": true,
73
+ "tokenizer_class": null,
74
+ "top_k": 50,
75
+ "top_p": 1.0,
76
+ "torch_dtype": null,
77
+ "torchscript": false,
78
+ "transformers_version": "4.29.0.dev0",
79
+ "typical_p": 1.0,
80
+ "use_bfloat16": false
81
+ },
82
+ "model_type": "sam",
83
+ "prompt_encoder_config": {
84
+ "_name_or_path": "",
85
+ "add_cross_attention": false,
86
+ "architectures": null,
87
+ "bad_words_ids": null,
88
+ "begin_suppress_tokens": null,
89
+ "bos_token_id": null,
90
+ "chunk_size_feed_forward": 0,
91
+ "cross_attention_hidden_size": null,
92
+ "decoder_start_token_id": null,
93
+ "diversity_penalty": 0.0,
94
+ "do_sample": false,
95
+ "early_stopping": false,
96
+ "encoder_no_repeat_ngram_size": 0,
97
+ "eos_token_id": null,
98
+ "exponential_decay_length_penalty": null,
99
+ "finetuning_task": null,
100
+ "forced_bos_token_id": null,
101
+ "forced_eos_token_id": null,
102
+ "hidden_act": "gelu",
103
+ "hidden_size": 256,
104
+ "id2label": {
105
+ "0": "LABEL_0",
106
+ "1": "LABEL_1"
107
+ },
108
+ "image_embedding_size": 64,
109
+ "image_size": 1024,
110
+ "is_decoder": false,
111
+ "is_encoder_decoder": false,
112
+ "label2id": {
113
+ "LABEL_0": 0,
114
+ "LABEL_1": 1
115
+ },
116
+ "layer_norm_eps": 1e-06,
117
+ "length_penalty": 1.0,
118
+ "mask_input_channels": 16,
119
+ "max_length": 20,
120
+ "min_length": 0,
121
+ "model_type": "",
122
+ "no_repeat_ngram_size": 0,
123
+ "num_beam_groups": 1,
124
+ "num_beams": 1,
125
+ "num_point_embeddings": 4,
126
+ "num_return_sequences": 1,
127
+ "output_attentions": false,
128
+ "output_hidden_states": false,
129
+ "output_scores": false,
130
+ "pad_token_id": null,
131
+ "patch_size": 16,
132
+ "prefix": null,
133
+ "problem_type": null,
134
+ "pruned_heads": {},
135
+ "remove_invalid_values": false,
136
+ "repetition_penalty": 1.0,
137
+ "return_dict": true,
138
+ "return_dict_in_generate": false,
139
+ "sep_token_id": null,
140
+ "suppress_tokens": null,
141
+ "task_specific_params": null,
142
+ "temperature": 1.0,
143
+ "tf_legacy_loss": false,
144
+ "tie_encoder_decoder": false,
145
+ "tie_word_embeddings": true,
146
+ "tokenizer_class": null,
147
+ "top_k": 50,
148
+ "top_p": 1.0,
149
+ "torch_dtype": null,
150
+ "torchscript": false,
151
+ "transformers_version": "4.29.0.dev0",
152
+ "typical_p": 1.0,
153
+ "use_bfloat16": false
154
+ },
155
+ "torch_dtype": "float32",
156
+ "transformers_version": null,
157
+ "vision_config": {
158
+ "_name_or_path": "",
159
+ "add_cross_attention": false,
160
+ "architectures": null,
161
+ "attention_dropout": 0.0,
162
+ "bad_words_ids": null,
163
+ "begin_suppress_tokens": null,
164
+ "bos_token_id": null,
165
+ "chunk_size_feed_forward": 0,
166
+ "cross_attention_hidden_size": null,
167
+ "decoder_start_token_id": null,
168
+ "diversity_penalty": 0.0,
169
+ "do_sample": false,
170
+ "dropout": 0.0,
171
+ "early_stopping": false,
172
+ "encoder_no_repeat_ngram_size": 0,
173
+ "eos_token_id": null,
174
+ "exponential_decay_length_penalty": null,
175
+ "finetuning_task": null,
176
+ "forced_bos_token_id": null,
177
+ "forced_eos_token_id": null,
178
+ "global_attn_indexes": [
179
+ 2,
180
+ 5,
181
+ 8,
182
+ 11
183
+ ],
184
+ "hidden_act": "gelu",
185
+ "hidden_size": 768,
186
+ "id2label": {
187
+ "0": "LABEL_0",
188
+ "1": "LABEL_1"
189
+ },
190
+ "image_size": 1024,
191
+ "initializer_factor": 1.0,
192
+ "initializer_range": 1e-10,
193
+ "intermediate_size": 6144,
194
+ "is_decoder": false,
195
+ "is_encoder_decoder": false,
196
+ "label2id": {
197
+ "LABEL_0": 0,
198
+ "LABEL_1": 1
199
+ },
200
+ "layer_norm_eps": 1e-06,
201
+ "length_penalty": 1.0,
202
+ "max_length": 20,
203
+ "min_length": 0,
204
+ "mlp_dim": 3072,
205
+ "mlp_ratio": 4.0,
206
+ "model_type": "",
207
+ "no_repeat_ngram_size": 0,
208
+ "num_attention_heads": 12,
209
+ "num_beam_groups": 1,
210
+ "num_beams": 1,
211
+ "num_channels": 3,
212
+ "num_hidden_layers": 12,
213
+ "num_pos_feats": 128,
214
+ "num_return_sequences": 1,
215
+ "output_attentions": false,
216
+ "output_channels": 256,
217
+ "output_hidden_states": false,
218
+ "output_scores": false,
219
+ "pad_token_id": null,
220
+ "patch_size": 16,
221
+ "prefix": null,
222
+ "problem_type": null,
223
+ "projection_dim": 512,
224
+ "pruned_heads": {},
225
+ "qkv_bias": true,
226
+ "remove_invalid_values": false,
227
+ "repetition_penalty": 1.0,
228
+ "return_dict": true,
229
+ "return_dict_in_generate": false,
230
+ "sep_token_id": null,
231
+ "suppress_tokens": null,
232
+ "task_specific_params": null,
233
+ "temperature": 1.0,
234
+ "tf_legacy_loss": false,
235
+ "tie_encoder_decoder": false,
236
+ "tie_word_embeddings": true,
237
+ "tokenizer_class": null,
238
+ "top_k": 50,
239
+ "top_p": 1.0,
240
+ "torch_dtype": null,
241
+ "torchscript": false,
242
+ "transformers_version": "4.29.0.dev0",
243
+ "typical_p": 1.0,
244
+ "use_abs_pos": true,
245
+ "use_bfloat16": false,
246
+ "use_rel_pos": true,
247
+ "window_size": 14
248
+ }
249
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_pad": true,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_processor_type": "SamImageProcessor",
13
+ "image_std": [
14
+ 0.229,
15
+ 0.224,
16
+ 0.225
17
+ ],
18
+ "pad_size": {
19
+ "height": 1024,
20
+ "width": 1024
21
+ },
22
+ "processor_class": "SamProcessor",
23
+ "resample": 2,
24
+ "rescale_factor": 0.00392156862745098,
25
+ "size": {
26
+ "longest_edge": 1024
27
+ }
28
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a1e860feeb895bc46f704d4faad2a0be739b5dfdca0ebdda520ffbcfb73f348
3
+ size 375050165
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfaf0843e7c825c7262261782344a8ea64a6914766ff886bc967198ece733ed5
3
+ size 375292824