Initial commit
Browse files- .gitattributes +1 -0
- README.md +29 -0
- a2c-Pendulum-v1.zip +3 -0
- a2c-Pendulum-v1/_stable_baselines3_version +1 -0
- a2c-Pendulum-v1/data +104 -0
- a2c-Pendulum-v1/policy.optimizer.pth +3 -0
- a2c-Pendulum-v1/policy.pth +3 -0
- a2c-Pendulum-v1/pytorch_variables.pth +3 -0
- a2c-Pendulum-v1/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +0 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -141.19 +/- 122.27
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Pendulum-v1
|
20 |
+
type: Pendulum-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **Pendulum-v1**
|
24 |
+
This is a trained model of a **A2C** agent playing **Pendulum-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
a2c-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25650e7189efc8b5f5504a7ead76ed2dddc311a5bb33b6439e8bcae1b2e3086d
|
3 |
+
size 95258
|
a2c-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a6
|
a2c-Pendulum-v1/data
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8861b7a7a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8861b7a830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8861b7a8c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8861b7a950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8861b7a9e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8861b7aa70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8861b7ab00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8861b7ab90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8861b7ac20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8861b7acb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8861b7ad40>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8861bc4930>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVlQAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wPb3B0aW1pemVyX2NsYXNzlIwTdG9yY2gub3B0aW0ucm1zcHJvcJSMB1JNU3Byb3CUk5SMEG9wdGltaXplcl9rd2FyZ3OUfZQojAVhbHBoYZRHP++uFHrhR66MA2Vwc5RHPuT4tYjjaPGMDHdlaWdodF9kZWNheZRLAHV1Lg==",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
27 |
+
"optimizer_kwargs": {
|
28 |
+
"alpha": 0.99,
|
29 |
+
"eps": 1e-05,
|
30 |
+
"weight_decay": 0
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"observation_space": {
|
34 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
35 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
36 |
+
"dtype": "float32",
|
37 |
+
"_shape": [
|
38 |
+
3
|
39 |
+
],
|
40 |
+
"low": "[-1. -1. -8.]",
|
41 |
+
"high": "[1. 1. 8.]",
|
42 |
+
"bounded_below": "[ True True True]",
|
43 |
+
"bounded_above": "[ True True True]",
|
44 |
+
"_np_random": null
|
45 |
+
},
|
46 |
+
"action_space": {
|
47 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
48 |
+
":serialized:": "gAWVWQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
49 |
+
"dtype": "float32",
|
50 |
+
"_shape": [
|
51 |
+
1
|
52 |
+
],
|
53 |
+
"low": "[-2.]",
|
54 |
+
"high": "[2.]",
|
55 |
+
"bounded_below": "[ True]",
|
56 |
+
"bounded_above": "[ True]",
|
57 |
+
"_np_random": null
|
58 |
+
},
|
59 |
+
"n_envs": 8,
|
60 |
+
"num_timesteps": 804272,
|
61 |
+
"_total_timesteps": 1000000,
|
62 |
+
"_num_timesteps_at_start": 0,
|
63 |
+
"seed": null,
|
64 |
+
"action_noise": null,
|
65 |
+
"start_time": 1652993194.4963021,
|
66 |
+
"learning_rate": 0.0007,
|
67 |
+
"tensorboard_log": null,
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
71 |
+
},
|
72 |
+
"_last_obs": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAMs6iD+zjUM+/L1UvTBYiD9N4jM+3C88vQnuhz/6TmY+6ueZvX/mhz/VX2k+174dvJzDhz+783Y+mUydvfQsiD8cZEo+kLeJvQb+hz9moV8+6Bglvd4ViD8kLVU+52WQvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLCEsDhpSMAUOUdJRSlC4="
|
75 |
+
},
|
76 |
+
"_last_episode_starts": {
|
77 |
+
":type:": "<class 'numpy.ndarray'>",
|
78 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
79 |
+
},
|
80 |
+
"_last_original_obs": {
|
81 |
+
":type:": "<class 'numpy.ndarray'>",
|
82 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAGBm8T6HwmG/RI1gP1cROr930y+/cRDyvuOyez/d6zo+k0xGPeVkfT89vBG+Ma5Bv0BRVj+2Aww/M0y4vtkZuD7G4G6/2dt8PwWdEb4EZn0/lJNRv9BIkz7eLXW/pCn8PJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLCEsDhpSMAUOUdJRSlC4="
|
83 |
+
},
|
84 |
+
"_episode_num": 0,
|
85 |
+
"use_sde": true,
|
86 |
+
"sde_sample_freq": -1,
|
87 |
+
"_current_progress_remaining": 0.19577599999999995,
|
88 |
+
"ep_info_buffer": {
|
89 |
+
":type:": "<class 'collections.deque'>",
|
90 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsYf2sYIjcMCUhpRSlIwBbJRLyIwBdJRHQGlxrEcbR4R1fZQoaAZoCWgPQwiX/5B++7ryv5SGlFKUaBVLyGgWR0BpcarT6SDAdX2UKGgGaAloD0MI5zdMNEhqb8CUhpRSlGgVS8hoFkdAaXGpazNUwXV9lChoBmgJaA9DCHsVGR2Q7G/AlIaUUpRoFUvIaBZHQGlxqABkqc51fZQoaAZoCWgPQwgI6SlyiAZfwJSGlFKUaBVLyGgWR0BpfvYxtYSydX2UKGgGaAloD0MIM2/VdahkYMCUhpRSlGgVS8hoFkdAaX71DjR2KXV9lChoBmgJaA9DCEhwI2WLKV7AlIaUUpRoFUvIaBZHQGl+85Ke05V1fZQoaAZoCWgPQwjIW65+bMR4wJSGlFKUaBVLyGgWR0BpfvJDE3sHdX2UKGgGaAloD0MId2UXDC65f8CUhpRSlGgVS8hoFkdAaX7w6ySmqHV9lChoBmgJaA9DCLKBdLFpTl/AlIaUUpRoFUvIaBZHQGl+74agmJF1fZQoaAZoCWgPQwi/uFSlLa7cv5SGlFKUaBVLyGgWR0Bpfu47Rv3rdX2UKGgGaAloD0MIP47myEokYMCUhpRSlGgVS8hoFkdAaX7s2vStvHV9lChoBmgJaA9DCKlNnNzvWXnAlIaUUpRoFUvIaBZHQGmMPzWf9P11fZQoaAZoCWgPQwjLgok/CqZgwJSGlFKUaBVLyGgWR0BpjD4etCAudX2UKGgGaAloD0MIUdobfKHdecCUhpRSlGgVS8hoFkdAaYw8p1A7gnV9lChoBmgJaA9DCI7J4v6jZWDAlIaUUpRoFUvIaBZHQGmMO1fE4vN1fZQoaAZoCWgPQwjNH9PaNAlgwJSGlFKUaBVLyGgWR0BpjDoEB8x9dX2UKGgGaAloD0MI4GbxYmG5d8CUhpRSlGgVS8hoFkdAaYw4nWrfcnV9lChoBmgJaA9DCKHWNO84BQ3AlIaUUpRoFUvIaBZHQGmMNzr/sE91fZQoaAZoCWgPQwgZkL3efUhgwJSGlFKUaBVLyGgWR0BpjDXYlIEsdX2UKGgGaAloD0MIfjoeM1B5AcCUhpRSlGgVS8hoFkdAaZmamXPZ7HV9lChoBmgJaA9DCIs2x7nNxHfAlIaUUpRoFUvIaBZHQGmZmZNO/L11fZQoaAZoCWgPQwiyTL9EvKtfwJSGlFKUaBVLyGgWR0BpmZg5R0lrdX2UKGgGaAloD0MI7YDrihlrcMCUhpRSlGgVS8hoFkdAaZmW/rSmZXV9lChoBmgJaA9DCADirl7FFmDAlIaUUpRoFUvIaBZHQGmZla8pTdd1fZQoaAZoCWgPQwh5ru/DAft3wJSGlFKUaBVLyGgWR0BpmZRTCLuQdX2UKGgGaAloD0MIK6VneglIYMCUhpRSlGgVS8hoFkdAaZmS+QEIPnV9lChoBmgJaA9DCCcXY2Ad1G7AlIaUUpRoFUvIaBZHQGmZkZaV2Rt1fZQoaAZoCWgPQwjDuvHuyA5gwJSGlFKUaBVLyGgWR0BpptNlAeJYdX2UKGgGaAloD0MInN1aJkPodsCUhpRSlGgVS8hoFkdAaabSRbKRuHV9lChoBmgJaA9DCJ91jZZDr3/AlIaUUpRoFUvIaBZHQGmm0Moc7yR1fZQoaAZoCWgPQwg8hzJUBTRwwJSGlFKUaBVLyGgWR0BpptAs052hdX2UKGgGaAloD0MIHEXWGspPYcCUhpRSlGgVS8hoFkdAaabO7g88tHV9lChoBmgJaA9DCAOUhhqFdB/AlIaUUpRoFUvIaBZHQGmmzY/Vy3l1fZQoaAZoCWgPQwgnEkw1s9lgwJSGlFKUaBVLyGgWR0BppswztTkydX2UKGgGaAloD0MIaeOItfirX8CUhpRSlGgVS8hoFkdAaabK15Sm7HV9lChoBmgJaA9DCFs//WfNjmDAlIaUUpRoFUvIaBZHQGm0LcsUZel1fZQoaAZoCWgPQwhXsmMjkNBuwJSGlFKUaBVLyGgWR0BptCzAvcrRdX2UKGgGaAloD0MIXvHUIw19cMCUhpRSlGgVS8hoFkdAabQrS3LFGXV9lChoBmgJaA9DCBHEeThBfnHAlIaUUpRoFUvIaBZHQGm0KgIyCWh1fZQoaAZoCWgPQwhtPNhiN9dgwJSGlFKUaBVLyGgWR0BptCiqQzUJdX2UKGgGaAloD0MIEOoihbKBccCUhpRSlGgVS8hoFkdAabQnRb8m8nV9lChoBmgJaA9DCIOHad9cUG/AlIaUUpRoFUvIaBZHQGm0JeeFtbd1fZQoaAZoCWgPQwhxx5v8FnpgwJSGlFKUaBVLyGgWR0BptCSHM2WIdX2UKGgGaAloD0MIMCx/vq2kYMCUhpRSlGgVS8hoFkdAacGClrM1THV9lChoBmgJaA9DCDfjNETVSXbAlIaUUpRoFUvIaBZHQGnBgc1fmcR1fZQoaAZoCWgPQwj75ZMVA3KAwJSGlFKUaBVLyGgWR0BpwYBeXzDodX2UKGgGaAloD0MIjGmme10fcMCUhpRSlGgVS8hoFkdAacF/FzdUKnV9lChoBmgJaA9DCBl1rb3P2XTAlIaUUpRoFUvIaBZHQGnBfb9If8x1fZQoaAZoCWgPQwggJXZtb0BfwJSGlFKUaBVLyGgWR0BpwXxe9i+ddX2UKGgGaAloD0MImwEuyJZIXsCUhpRSlGgVS8hoFkdAacF7BO58SnV9lChoBmgJaA9DCFSp2QNtFXDAlIaUUpRoFUvIaBZHQGnBearmyPd1fZQoaAZoCWgPQwhfRNsxdacYwJSGlFKUaBVLyGgWR0BpztkjHGS7dX2UKGgGaAloD0MIsU8AxQi8cMCUhpRSlGgVS8hoFkdAac7YA80UGnV9lChoBmgJaA9DCGssYW2MfRnAlIaUUpRoFUvIaBZHQGnO1oQFs551fZQoaAZoCWgPQwjWVBaF3dBgwJSGlFKUaBVLyGgWR0BpztVT72tddX2UKGgGaAloD0MIOzWXG4xKYMCUhpRSlGgVS8hoFkdAac7UBGQSz3V9lChoBmgJaA9DCN4DdF/O01/AlIaUUpRoFUvIaBZHQGnO0qH446x1fZQoaAZoCWgPQwgMsfojDDMYwJSGlFKUaBVLyGgWR0BpztFDv3JxdX2UKGgGaAloD0MIpIl3gOfAcMCUhpRSlGgVS8hoFkdAac7P5YYBNnV9lChoBmgJaA9DCCPYuP7dgGDAlIaUUpRoFUvIaBZHQGncPr4WUKR1fZQoaAZoCWgPQwhaYmU08rFgwJSGlFKUaBVLyGgWR0Bp3D2rXDm9dX2UKGgGaAloD0MIA2A8g8YIdMCUhpRSlGgVS8hoFkdAadw8M/hVEXV9lChoBmgJaA9DCPg2/dkPgGDAlIaUUpRoFUvIaBZHQGncOuzQeFN1fZQoaAZoCWgPQwgiqYWSyVBvwJSGlFKUaBVLyGgWR0Bp3DmbLEDRdX2UKGgGaAloD0MILQq7KHp8YMCUhpRSlGgVS8hoFkdAadw4OMERrnV9lChoBmgJaA9DCHnKarqemV/AlIaUUpRoFUvIaBZHQGncNt65Xlt1fZQoaAZoCWgPQwiu9NpsrCRvwJSGlFKUaBVLyGgWR0Bp3DWAf+0gdX2UKGgGaAloD0MIDvj8MEIKX8CUhpRSlGgVS8hoFkdAaemVObiIcnV9lChoBmgJaA9DCBvUfmsnKhDAlIaUUpRoFUvIaBZHQGnplByCFsZ1fZQoaAZoCWgPQwghsd09QHtfwJSGlFKUaBVLyGgWR0Bp6ZKg7HQydX2UKGgGaAloD0MIvMrapviHd8CUhpRSlGgVS8hoFkdAaemRUWEbpHV9lChoBmgJaA9DCC/E6o8wTA7AlIaUUpRoFUvIaBZHQGnpj/lyR0V1fZQoaAZoCWgPQwi5NlSM81BgwJSGlFKUaBVLyGgWR0Bp6Y6S1Vo6dX2UKGgGaAloD0MIbZG0G70GeMCUhpRSlGgVS8hoFkdAaemNRWLgoHV9lChoBmgJaA9DCOccPBMaUXPAlIaUUpRoFUvIaBZHQGnpi+cpb2V1fZQoaAZoCWgPQwj2KFyPwmNgwJSGlFKUaBVLyGgWR0Bp9tchTwUhdX2UKGgGaAloD0MIs7RTc7lKesCUhpRSlGgVS8hoFkdAafbWDpTuOXV9lChoBmgJaA9DCBTtKqT8SF/AlIaUUpRoFUvIaBZHQGn21JL/S6V1fZQoaAZoCWgPQwjeAgmKH3FuwJSGlFKUaBVLyGgWR0Bp9tNDc/MXdX2UKGgGaAloD0MIEt2zrlF8b8CUhpRSlGgVS8hoFkdAafbR6Ww/xHV9lChoBmgJaA9DCAGIu3qVa2DAlIaUUpRoFUvIaBZHQGn20ILPUrl1fZQoaAZoCWgPQwgBaf8DbBlwwJSGlFKUaBVLyGgWR0Bp9s8cMmWudX2UKGgGaAloD0MIjbW/sz0leMCUhpRSlGgVS8hoFkdAafbNvfj0c3V9lChoBmgJaA9DCNR/1vx41W/AlIaUUpRoFUvIaBZHQGoESP+4smR1fZQoaAZoCWgPQwg0SMFTyC9gwJSGlFKUaBVLyGgWR0BqBEfgaWHDdX2UKGgGaAloD0MI0gFJ2DfvYMCUhpRSlGgVS8hoFkdAagRGYrrgO3V9lChoBmgJaA9DCLQAbauZ2nrAlIaUUpRoFUvIaBZHQGoERQ79ycV1fZQoaAZoCWgPQwg0aVN1j9ZfwJSGlFKUaBVLyGgWR0BqBEO09hZydX2UKGgGaAloD0MI11HVBNGQYMCUhpRSlGgVS8hoFkdAagRCUHIIW3V9lChoBmgJaA9DCFg5tMh2bhXAlIaUUpRoFUvIaBZHQGoEQPI4lyB1fZQoaAZoCWgPQwgQrRVtjnMVwJSGlFKUaBVLyGgWR0BqBD+T/yXldX2UKGgGaAloD0MImWIOgo4kYMCUhpRSlGgVS8hoFkdAahGsXizcAXV9lChoBmgJaA9DCH9o5sk1P2DAlIaUUpRoFUvIaBZHQGoRq15Sm651fZQoaAZoCWgPQwig4c0avHBgwJSGlFKUaBVLyGgWR0BqEanxaxHHdX2UKGgGaAloD0MItfrqqkAid8CUhpRSlGgVS8hoFkdAahGood+5OXV9lChoBmgJaA9DCKyL22gAM2DAlIaUUpRoFUvIaBZHQGoRp0nw5Np1fZQoaAZoCWgPQwhxOzQsBgN4wJSGlFKUaBVLyGgWR0BqEaXjU/fPdX2UKGgGaAloD0MIE2OZfgkzYMCUhpRSlGgVS8hoFkdAahGkiUxEfHV9lChoBmgJaA9DCLFTrBoEfGDAlIaUUpRoFUvIaBZHQGoRoyj59E11ZS4="
|
91 |
+
},
|
92 |
+
"ep_success_buffer": {
|
93 |
+
":type:": "<class 'collections.deque'>",
|
94 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
95 |
+
},
|
96 |
+
"_n_updates": 12566,
|
97 |
+
"n_steps": 8,
|
98 |
+
"gamma": 0.9,
|
99 |
+
"gae_lambda": 0.9,
|
100 |
+
"ent_coef": 0.0,
|
101 |
+
"vf_coef": 0.5,
|
102 |
+
"max_grad_norm": 0.5,
|
103 |
+
"normalize_advantage": false
|
104 |
+
}
|
a2c-Pendulum-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fa7d1aa4a6eded8e42807d9ff084b468f384cbafa48ca2392bbf3226d6a7ee4
|
3 |
+
size 39614
|
a2c-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecba30c5e753acff0bc2736d2757460ef0a44177d864a1b8512a855bfbb49a9c
|
3 |
+
size 40254
|
a2c-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
|
2 |
+
Python: 3.7.12
|
3 |
+
Stable-Baselines3: 1.5.1a6
|
4 |
+
PyTorch: 1.11.0+cpu
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8861b7a7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8861b7a830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8861b7a8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8861b7a950>", "_build": "<function ActorCriticPolicy._build at 0x7f8861b7a9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8861b7aa70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8861b7ab00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8861b7ab90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8861b7ac20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8861b7acb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8861b7ad40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8861bc4930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlQAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wPb3B0aW1pemVyX2NsYXNzlIwTdG9yY2gub3B0aW0ucm1zcHJvcJSMB1JNU3Byb3CUk5SMEG9wdGltaXplcl9rd2FyZ3OUfZQojAVhbHBoYZRHP++uFHrhR66MA2Vwc5RHPuT4tYjjaPGMDHdlaWdodF9kZWNheZRLAHV1Lg==", "log_std_init": -2, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVWQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [1], "low": "[-2.]", "high": "[2.]", "bounded_below": "[ True]", "bounded_above": "[ True]", "_np_random": null}, "n_envs": 8, "num_timesteps": 804272, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652993194.4963021, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAMs6iD+zjUM+/L1UvTBYiD9N4jM+3C88vQnuhz/6TmY+6ueZvX/mhz/VX2k+174dvJzDhz+783Y+mUydvfQsiD8cZEo+kLeJvQb+hz9moV8+6Bglvd4ViD8kLVU+52WQvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLCEsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAGBm8T6HwmG/RI1gP1cROr930y+/cRDyvuOyez/d6zo+k0xGPeVkfT89vBG+Ma5Bv0BRVj+2Aww/M0y4vtkZuD7G4G6/2dt8PwWdEb4EZn0/lJNRv9BIkz7eLXW/pCn8PJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLCEsDhpSMAUOUdJRSlC4="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.19577599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsYf2sYIjcMCUhpRSlIwBbJRLyIwBdJRHQGlxrEcbR4R1fZQoaAZoCWgPQwiX/5B++7ryv5SGlFKUaBVLyGgWR0BpcarT6SDAdX2UKGgGaAloD0MI5zdMNEhqb8CUhpRSlGgVS8hoFkdAaXGpazNUwXV9lChoBmgJaA9DCHsVGR2Q7G/AlIaUUpRoFUvIaBZHQGlxqABkqc51fZQoaAZoCWgPQwgI6SlyiAZfwJSGlFKUaBVLyGgWR0BpfvYxtYSydX2UKGgGaAloD0MIM2/VdahkYMCUhpRSlGgVS8hoFkdAaX71DjR2KXV9lChoBmgJaA9DCEhwI2WLKV7AlIaUUpRoFUvIaBZHQGl+85Ke05V1fZQoaAZoCWgPQwjIW65+bMR4wJSGlFKUaBVLyGgWR0BpfvJDE3sHdX2UKGgGaAloD0MId2UXDC65f8CUhpRSlGgVS8hoFkdAaX7w6ySmqHV9lChoBmgJaA9DCLKBdLFpTl/AlIaUUpRoFUvIaBZHQGl+74agmJF1fZQoaAZoCWgPQwi/uFSlLa7cv5SGlFKUaBVLyGgWR0Bpfu47Rv3rdX2UKGgGaAloD0MIP47myEokYMCUhpRSlGgVS8hoFkdAaX7s2vStvHV9lChoBmgJaA9DCKlNnNzvWXnAlIaUUpRoFUvIaBZHQGmMPzWf9P11fZQoaAZoCWgPQwjLgok/CqZgwJSGlFKUaBVLyGgWR0BpjD4etCAudX2UKGgGaAloD0MIUdobfKHdecCUhpRSlGgVS8hoFkdAaYw8p1A7gnV9lChoBmgJaA9DCI7J4v6jZWDAlIaUUpRoFUvIaBZHQGmMO1fE4vN1fZQoaAZoCWgPQwjNH9PaNAlgwJSGlFKUaBVLyGgWR0BpjDoEB8x9dX2UKGgGaAloD0MI4GbxYmG5d8CUhpRSlGgVS8hoFkdAaYw4nWrfcnV9lChoBmgJaA9DCKHWNO84BQ3AlIaUUpRoFUvIaBZHQGmMNzr/sE91fZQoaAZoCWgPQwgZkL3efUhgwJSGlFKUaBVLyGgWR0BpjDXYlIEsdX2UKGgGaAloD0MIfjoeM1B5AcCUhpRSlGgVS8hoFkdAaZmamXPZ7HV9lChoBmgJaA9DCIs2x7nNxHfAlIaUUpRoFUvIaBZHQGmZmZNO/L11fZQoaAZoCWgPQwiyTL9EvKtfwJSGlFKUaBVLyGgWR0BpmZg5R0lrdX2UKGgGaAloD0MI7YDrihlrcMCUhpRSlGgVS8hoFkdAaZmW/rSmZXV9lChoBmgJaA9DCADirl7FFmDAlIaUUpRoFUvIaBZHQGmZla8pTdd1fZQoaAZoCWgPQwh5ru/DAft3wJSGlFKUaBVLyGgWR0BpmZRTCLuQdX2UKGgGaAloD0MIK6VneglIYMCUhpRSlGgVS8hoFkdAaZmS+QEIPnV9lChoBmgJaA9DCCcXY2Ad1G7AlIaUUpRoFUvIaBZHQGmZkZaV2Rt1fZQoaAZoCWgPQwjDuvHuyA5gwJSGlFKUaBVLyGgWR0BpptNlAeJYdX2UKGgGaAloD0MInN1aJkPodsCUhpRSlGgVS8hoFkdAaabSRbKRuHV9lChoBmgJaA9DCJ91jZZDr3/AlIaUUpRoFUvIaBZHQGmm0Moc7yR1fZQoaAZoCWgPQwg8hzJUBTRwwJSGlFKUaBVLyGgWR0BpptAs052hdX2UKGgGaAloD0MIHEXWGspPYcCUhpRSlGgVS8hoFkdAaabO7g88tHV9lChoBmgJaA9DCAOUhhqFdB/AlIaUUpRoFUvIaBZHQGmmzY/Vy3l1fZQoaAZoCWgPQwgnEkw1s9lgwJSGlFKUaBVLyGgWR0BppswztTkydX2UKGgGaAloD0MIaeOItfirX8CUhpRSlGgVS8hoFkdAaabK15Sm7HV9lChoBmgJaA9DCFs//WfNjmDAlIaUUpRoFUvIaBZHQGm0LcsUZel1fZQoaAZoCWgPQwhXsmMjkNBuwJSGlFKUaBVLyGgWR0BptCzAvcrRdX2UKGgGaAloD0MIXvHUIw19cMCUhpRSlGgVS8hoFkdAabQrS3LFGXV9lChoBmgJaA9DCBHEeThBfnHAlIaUUpRoFUvIaBZHQGm0KgIyCWh1fZQoaAZoCWgPQwhtPNhiN9dgwJSGlFKUaBVLyGgWR0BptCiqQzUJdX2UKGgGaAloD0MIEOoihbKBccCUhpRSlGgVS8hoFkdAabQnRb8m8nV9lChoBmgJaA9DCIOHad9cUG/AlIaUUpRoFUvIaBZHQGm0JeeFtbd1fZQoaAZoCWgPQwhxx5v8FnpgwJSGlFKUaBVLyGgWR0BptCSHM2WIdX2UKGgGaAloD0MIMCx/vq2kYMCUhpRSlGgVS8hoFkdAacGClrM1THV9lChoBmgJaA9DCDfjNETVSXbAlIaUUpRoFUvIaBZHQGnBgc1fmcR1fZQoaAZoCWgPQwj75ZMVA3KAwJSGlFKUaBVLyGgWR0BpwYBeXzDodX2UKGgGaAloD0MIjGmme10fcMCUhpRSlGgVS8hoFkdAacF/FzdUKnV9lChoBmgJaA9DCBl1rb3P2XTAlIaUUpRoFUvIaBZHQGnBfb9If8x1fZQoaAZoCWgPQwggJXZtb0BfwJSGlFKUaBVLyGgWR0BpwXxe9i+ddX2UKGgGaAloD0MImwEuyJZIXsCUhpRSlGgVS8hoFkdAacF7BO58SnV9lChoBmgJaA9DCFSp2QNtFXDAlIaUUpRoFUvIaBZHQGnBearmyPd1fZQoaAZoCWgPQwhfRNsxdacYwJSGlFKUaBVLyGgWR0BpztkjHGS7dX2UKGgGaAloD0MIsU8AxQi8cMCUhpRSlGgVS8hoFkdAac7YA80UGnV9lChoBmgJaA9DCGssYW2MfRnAlIaUUpRoFUvIaBZHQGnO1oQFs551fZQoaAZoCWgPQwjWVBaF3dBgwJSGlFKUaBVLyGgWR0BpztVT72tddX2UKGgGaAloD0MIOzWXG4xKYMCUhpRSlGgVS8hoFkdAac7UBGQSz3V9lChoBmgJaA9DCN4DdF/O01/AlIaUUpRoFUvIaBZHQGnO0qH446x1fZQoaAZoCWgPQwgMsfojDDMYwJSGlFKUaBVLyGgWR0BpztFDv3JxdX2UKGgGaAloD0MIpIl3gOfAcMCUhpRSlGgVS8hoFkdAac7P5YYBNnV9lChoBmgJaA9DCCPYuP7dgGDAlIaUUpRoFUvIaBZHQGncPr4WUKR1fZQoaAZoCWgPQwhaYmU08rFgwJSGlFKUaBVLyGgWR0Bp3D2rXDm9dX2UKGgGaAloD0MIA2A8g8YIdMCUhpRSlGgVS8hoFkdAadw8M/hVEXV9lChoBmgJaA9DCPg2/dkPgGDAlIaUUpRoFUvIaBZHQGncOuzQeFN1fZQoaAZoCWgPQwgiqYWSyVBvwJSGlFKUaBVLyGgWR0Bp3DmbLEDRdX2UKGgGaAloD0MILQq7KHp8YMCUhpRSlGgVS8hoFkdAadw4OMERrnV9lChoBmgJaA9DCHnKarqemV/AlIaUUpRoFUvIaBZHQGncNt65Xlt1fZQoaAZoCWgPQwiu9NpsrCRvwJSGlFKUaBVLyGgWR0Bp3DWAf+0gdX2UKGgGaAloD0MIDvj8MEIKX8CUhpRSlGgVS8hoFkdAaemVObiIcnV9lChoBmgJaA9DCBvUfmsnKhDAlIaUUpRoFUvIaBZHQGnplByCFsZ1fZQoaAZoCWgPQwghsd09QHtfwJSGlFKUaBVLyGgWR0Bp6ZKg7HQydX2UKGgGaAloD0MIvMrapviHd8CUhpRSlGgVS8hoFkdAaemRUWEbpHV9lChoBmgJaA9DCC/E6o8wTA7AlIaUUpRoFUvIaBZHQGnpj/lyR0V1fZQoaAZoCWgPQwi5NlSM81BgwJSGlFKUaBVLyGgWR0Bp6Y6S1Vo6dX2UKGgGaAloD0MIbZG0G70GeMCUhpRSlGgVS8hoFkdAaemNRWLgoHV9lChoBmgJaA9DCOccPBMaUXPAlIaUUpRoFUvIaBZHQGnpi+cpb2V1fZQoaAZoCWgPQwj2KFyPwmNgwJSGlFKUaBVLyGgWR0Bp9tchTwUhdX2UKGgGaAloD0MIs7RTc7lKesCUhpRSlGgVS8hoFkdAafbWDpTuOXV9lChoBmgJaA9DCBTtKqT8SF/AlIaUUpRoFUvIaBZHQGn21JL/S6V1fZQoaAZoCWgPQwjeAgmKH3FuwJSGlFKUaBVLyGgWR0Bp9tNDc/MXdX2UKGgGaAloD0MIEt2zrlF8b8CUhpRSlGgVS8hoFkdAafbR6Ww/xHV9lChoBmgJaA9DCAGIu3qVa2DAlIaUUpRoFUvIaBZHQGn20ILPUrl1fZQoaAZoCWgPQwgBaf8DbBlwwJSGlFKUaBVLyGgWR0Bp9s8cMmWudX2UKGgGaAloD0MIjbW/sz0leMCUhpRSlGgVS8hoFkdAafbNvfj0c3V9lChoBmgJaA9DCNR/1vx41W/AlIaUUpRoFUvIaBZHQGoESP+4smR1fZQoaAZoCWgPQwg0SMFTyC9gwJSGlFKUaBVLyGgWR0BqBEfgaWHDdX2UKGgGaAloD0MI0gFJ2DfvYMCUhpRSlGgVS8hoFkdAagRGYrrgO3V9lChoBmgJaA9DCLQAbauZ2nrAlIaUUpRoFUvIaBZHQGoERQ79ycV1fZQoaAZoCWgPQwg0aVN1j9ZfwJSGlFKUaBVLyGgWR0BqBEO09hZydX2UKGgGaAloD0MI11HVBNGQYMCUhpRSlGgVS8hoFkdAagRCUHIIW3V9lChoBmgJaA9DCFg5tMh2bhXAlIaUUpRoFUvIaBZHQGoEQPI4lyB1fZQoaAZoCWgPQwgQrRVtjnMVwJSGlFKUaBVLyGgWR0BqBD+T/yXldX2UKGgGaAloD0MImWIOgo4kYMCUhpRSlGgVS8hoFkdAahGsXizcAXV9lChoBmgJaA9DCH9o5sk1P2DAlIaUUpRoFUvIaBZHQGoRq15Sm651fZQoaAZoCWgPQwig4c0avHBgwJSGlFKUaBVLyGgWR0BqEanxaxHHdX2UKGgGaAloD0MItfrqqkAid8CUhpRSlGgVS8hoFkdAahGood+5OXV9lChoBmgJaA9DCKyL22gAM2DAlIaUUpRoFUvIaBZHQGoRp0nw5Np1fZQoaAZoCWgPQwhxOzQsBgN4wJSGlFKUaBVLyGgWR0BqEaXjU/fPdX2UKGgGaAloD0MIE2OZfgkzYMCUhpRSlGgVS8hoFkdAahGkiUxEfHV9lChoBmgJaA9DCLFTrBoEfGDAlIaUUpRoFUvIaBZHQGoRoyj59E11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12566, "n_steps": 8, "gamma": 0.9, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.5.1a6", "PyTorch": "1.11.0+cpu", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4d36a3cf4c998c7d8e6ced95b0b5264891c22f91364931eee996e11b5720f0b
|
3 |
+
size 129485
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -141.1884953, "std_reward": 122.26897425286533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-19T22:50:12.306466"}
|
vec_normalize.pkl
ADDED
Binary file (1.49 kB). View file
|
|