--- license: llama3.1 base_model: Crystalcareai/Meta-llama-3.1-8b-instruct tags: - generated_from_trainer model-index: - name: outputs/out-myalee results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Crystalcareai/Meta-llama-3.1-8b-instruct model_type: AutoTokenizer tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: /workspace/data/myalee type: alpaca - path: mlabonne/FineTome-100k type: sharegpt chat_template: llama3 dataset_prepared_path: last_run_prepared # val_set_size: 0.05 output_dir: ./outputs/out-myalee sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: unfrozen_parameters: - ^lm_head.weight$ - ^model.embed_tokens.weight$ # input_layernorm layers - model.layers.0.input_layernorm - model.layers.1.input_layernorm - model.layers.2.input_layernorm - model.layers.3.input_layernorm - model.layers.4.input_layernorm - model.layers.5.input_layernorm - model.layers.6.input_layernorm - model.layers.7.input_layernorm - model.layers.8.input_layernorm - model.layers.9.input_layernorm - model.layers.10.input_layernorm - model.layers.11.input_layernorm - model.layers.12.input_layernorm - model.layers.13.input_layernorm - model.layers.14.input_layernorm - model.layers.15.input_layernorm # lm_head layers # mlp.down_proj layers - model.layers.1.mlp.down_proj - model.layers.0.mlp.down_proj - model.layers.30.mlp.down_proj - model.layers.2.mlp.down_proj - model.layers.21.mlp.down_proj - model.layers.22.mlp.down_proj - model.layers.29.mlp.down_proj - model.layers.5.mlp.down_proj - model.layers.4.mlp.down_proj - model.layers.20.mlp.down_proj - model.layers.23.mlp.down_proj - model.layers.19.mlp.down_proj - model.layers.3.mlp.down_proj - model.layers.17.mlp.down_proj - model.layers.6.mlp.down_proj - model.layers.31.mlp.down_proj # mlp.gate_proj layers - model.layers.1.mlp.gate_proj - model.layers.2.mlp.gate_proj - model.layers.3.mlp.gate_proj - model.layers.4.mlp.gate_proj - model.layers.0.mlp.gate_proj - model.layers.25.mlp.gate_proj - model.layers.26.mlp.gate_proj - model.layers.5.mlp.gate_proj - model.layers.24.mlp.gate_proj - model.layers.28.mlp.gate_proj - model.layers.23.mlp.gate_proj - model.layers.27.mlp.gate_proj - model.layers.21.mlp.gate_proj - model.layers.22.mlp.gate_proj - model.layers.29.mlp.gate_proj - model.layers.20.mlp.gate_proj # mlp.up_proj layers - model.layers.4.mlp.up_proj - model.layers.3.mlp.up_proj - model.layers.0.mlp.up_proj - model.layers.5.mlp.up_proj - model.layers.7.mlp.up_proj - model.layers.6.mlp.up_proj - model.layers.2.mlp.up_proj - model.layers.1.mlp.up_proj - model.layers.8.mlp.up_proj - model.layers.12.mlp.up_proj - model.layers.14.mlp.up_proj - model.layers.9.mlp.up_proj - model.layers.15.mlp.up_proj - model.layers.17.mlp.up_proj - model.layers.13.mlp.up_proj - model.layers.19.mlp.up_proj # model.embed_tokens layers # model.norm layers # post_attention_layernorm layers - model.layers.0.post_attention_layernorm - model.layers.1.post_attention_layernorm - model.layers.2.post_attention_layernorm - model.layers.3.post_attention_layernorm - model.layers.4.post_attention_layernorm - model.layers.5.post_attention_layernorm - model.layers.6.post_attention_layernorm - model.layers.7.post_attention_layernorm - model.layers.8.post_attention_layernorm - model.layers.9.post_attention_layernorm - model.layers.10.post_attention_layernorm - model.layers.11.post_attention_layernorm - model.layers.12.post_attention_layernorm - model.layers.13.post_attention_layernorm - model.layers.14.post_attention_layernorm - model.layers.15.post_attention_layernorm # self_attn.k_proj layers - model.layers.29.self_attn.k_proj - model.layers.25.self_attn.k_proj - model.layers.23.self_attn.k_proj - model.layers.28.self_attn.k_proj - model.layers.21.self_attn.k_proj - model.layers.19.self_attn.k_proj - model.layers.22.self_attn.k_proj - model.layers.20.self_attn.k_proj - model.layers.24.self_attn.k_proj - model.layers.31.self_attn.k_proj - model.layers.27.self_attn.k_proj - model.layers.26.self_attn.k_proj - model.layers.17.self_attn.k_proj - model.layers.11.self_attn.k_proj - model.layers.18.self_attn.k_proj - model.layers.14.self_attn.k_proj # self_attn.o_proj layers - model.layers.14.self_attn.o_proj - model.layers.7.self_attn.o_proj - model.layers.5.self_attn.o_proj - model.layers.11.self_attn.o_proj - model.layers.6.self_attn.o_proj - model.layers.24.self_attn.o_proj - model.layers.9.self_attn.o_proj - model.layers.13.self_attn.o_proj - model.layers.10.self_attn.o_proj - model.layers.12.self_attn.o_proj - model.layers.8.self_attn.o_proj - model.layers.25.self_attn.o_proj - model.layers.21.self_attn.o_proj - model.layers.23.self_attn.o_proj - model.layers.15.self_attn.o_proj - model.layers.16.self_attn.o_proj # self_attn.q_proj layers - model.layers.8.self_attn.q_proj - model.layers.13.self_attn.q_proj - model.layers.9.self_attn.q_proj - model.layers.14.self_attn.q_proj - model.layers.10.self_attn.q_proj - model.layers.11.self_attn.q_proj - model.layers.0.self_attn.q_proj - model.layers.15.self_attn.q_proj - model.layers.1.self_attn.q_proj - model.layers.6.self_attn.q_proj - model.layers.5.self_attn.q_proj - model.layers.7.self_attn.q_proj - model.layers.12.self_attn.q_proj - model.layers.16.self_attn.q_proj - model.layers.17.self_attn.q_proj - model.layers.26.self_attn.q_proj # self_attn.v_proj layers - model.layers.26.self_attn.v_proj - model.layers.17.self_attn.v_proj - model.layers.3.self_attn.v_proj - model.layers.28.self_attn.v_proj - model.layers.29.self_attn.v_proj - model.layers.21.self_attn.v_proj - model.layers.15.self_attn.v_proj - model.layers.16.self_attn.v_proj - model.layers.20.self_attn.v_proj - model.layers.25.self_attn.v_proj - model.layers.6.self_attn.v_proj - model.layers.23.self_attn.v_proj - model.layers.4.self_attn.v_proj - model.layers.1.self_attn.v_proj - model.layers.22.self_attn.v_proj - model.layers.14.self_attn.v_proj gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 25 # evals_per_epoch: 2 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/out-myalee This model is a fine-tuned version of [Crystalcareai/Meta-llama-3.1-8b-instruct](https://huggingface.co/Crystalcareai/Meta-llama-3.1-8b-instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.43.1 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1