aotrih commited on
Commit
2dfe646
1 Parent(s): 6025308

whisperkittools-f6bc74140b8889f920ed56a9670c0676f69f9c9a generated files: openai_whisper-large-v3_turbo

Browse files
Files changed (22) hide show
  1. openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/analytics/coremldata.bin +3 -0
  2. openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/coremldata.bin +3 -0
  3. openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/metadata.json +69 -0
  4. openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/model.mil +0 -0
  5. openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/weights/weight.bin +3 -0
  6. openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/analytics/coremldata.bin +3 -0
  7. openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/coremldata.bin +3 -0
  8. openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/metadata.json +71 -0
  9. openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/model.mil +66 -0
  10. openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/weights/weight.bin +3 -0
  11. openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/analytics/coremldata.bin +3 -0
  12. openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/coremldata.bin +3 -0
  13. openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/metadata.json +165 -0
  14. openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/model.mil +0 -0
  15. openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/weights/weight.bin +3 -0
  16. openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/analytics/coremldata.bin +3 -0
  17. openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/coremldata.bin +3 -0
  18. openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/metadata.json +82 -0
  19. openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/model.mil +27 -0
  20. openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/weights/weight.bin +3 -0
  21. openai_whisper-large-v3_turbo/config.json +1 -0
  22. openai_whisper-large-v3_turbo/generation_config.json +1 -0
openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b68eb75cef8a4b3585423dca03d42d2f6ff34029421ad11752ea5be85c9bbf4c
3
+ size 243
openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:273d6cd004f95763e9d03e5d36622f11038819a81b9eafed64b1d95444e04f62
3
+ size 348
openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1280 × 1 × 1500)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1280, 1, 1500]",
13
+ "name" : "encoder_output_embeds",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 7,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Concat" : 672,
23
+ "Ios16.rsqrt" : 65,
24
+ "Ios16.mul" : 2690,
25
+ "SliceByIndex" : 4480,
26
+ "Ios16.sub" : 65,
27
+ "Transpose" : 32,
28
+ "Ios16.einsum" : 5120,
29
+ "Ios16.conv" : 194,
30
+ "Ios16.add" : 130,
31
+ "Ios16.reduceMean" : 130,
32
+ "Ios16.softmax" : 2560,
33
+ "Ios16.gelu" : 34,
34
+ "Ios16.batchNorm" : 65
35
+ },
36
+ "computePrecision" : "Mixed (Float16, Int32)",
37
+ "isUpdatable" : "0",
38
+ "availability" : {
39
+ "macOS" : "13.0",
40
+ "tvOS" : "16.0",
41
+ "visionOS" : "1.0",
42
+ "watchOS" : "9.0",
43
+ "iOS" : "16.0",
44
+ "macCatalyst" : "16.0"
45
+ },
46
+ "modelType" : {
47
+ "name" : "MLModelType_mlProgram"
48
+ },
49
+ "userDefinedMetadata" : {
50
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
51
+ "com.github.apple.coremltools.version" : "7.1",
52
+ "com.github.apple.coremltools.source" : "torch==2.2.1"
53
+ },
54
+ "inputSchema" : [
55
+ {
56
+ "hasShapeFlexibility" : "0",
57
+ "isOptional" : "0",
58
+ "dataType" : "Float16",
59
+ "formattedType" : "MultiArray (Float16 1 × 128 × 1 × 3000)",
60
+ "shortDescription" : "",
61
+ "shape" : "[1, 128, 1, 3000]",
62
+ "name" : "melspectrogram_features",
63
+ "type" : "MultiArray"
64
+ }
65
+ ],
66
+ "generatedClassName" : "AudioEncoder",
67
+ "method" : "predict"
68
+ }
69
+ ]
openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
openai_whisper-large-v3_turbo/AudioEncoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f46870171555792f9e98d5266d2c7d885a18962093b3a9544fffa54dbe8df16
3
+ size 1273974400
openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091a361134891f94e613562771beea0d93a9aefbc6984ba86c60f856e07a508f
3
+ size 243
openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3c5778c86d6fbc6a9817a56dbcac05a946a4d95c77f6db8355572f3be9e9a68
3
+ size 329
openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/metadata.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 128 × 1 × 3000)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 128, 1, 3000]",
13
+ "name" : "melspectrogram_features",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 7,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Pad" : 1,
23
+ "Ios16.mul" : 2,
24
+ "SliceByIndex" : 1,
25
+ "Ios16.sub" : 1,
26
+ "Ios16.log" : 1,
27
+ "Ios16.conv" : 2,
28
+ "Ios16.add" : 3,
29
+ "Ios16.square" : 2,
30
+ "Ios16.matmul" : 1,
31
+ "Squeeze" : 2,
32
+ "Ios16.maximum" : 1,
33
+ "ExpandDims" : 4,
34
+ "Ios16.reduceMax" : 1,
35
+ "Identity" : 1,
36
+ "Ios16.reshape" : 2
37
+ },
38
+ "computePrecision" : "Mixed (Float16, Int32)",
39
+ "isUpdatable" : "0",
40
+ "availability" : {
41
+ "macOS" : "13.0",
42
+ "tvOS" : "16.0",
43
+ "visionOS" : "1.0",
44
+ "watchOS" : "9.0",
45
+ "iOS" : "16.0",
46
+ "macCatalyst" : "16.0"
47
+ },
48
+ "modelType" : {
49
+ "name" : "MLModelType_mlProgram"
50
+ },
51
+ "userDefinedMetadata" : {
52
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
53
+ "com.github.apple.coremltools.source" : "torch==2.2.1",
54
+ "com.github.apple.coremltools.version" : "7.1"
55
+ },
56
+ "inputSchema" : [
57
+ {
58
+ "hasShapeFlexibility" : "0",
59
+ "isOptional" : "0",
60
+ "dataType" : "Float16",
61
+ "formattedType" : "MultiArray (Float16 480000)",
62
+ "shortDescription" : "",
63
+ "shape" : "[480000]",
64
+ "name" : "audio",
65
+ "type" : "MultiArray"
66
+ }
67
+ ],
68
+ "generatedClassName" : "MelSpectrogram",
69
+ "method" : "predict"
70
+ }
71
+ ]
openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/model.mil ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.2.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
3
+ {
4
+ func main<ios16>(tensor<fp16, [480000]> audio) {
5
+ tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
6
+ tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
7
+ tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
8
+ tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
9
+ tensor<fp16, []> input_3_constant_val_0_to_fp16 = const()[name = tensor<string, []>("input_3_constant_val_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
10
+ tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val = input_3_constant_val_0_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
11
+ tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
12
+ tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
13
+ tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
14
+ tensor<fp16, [1, 480400]> expand_dims_0_cast_fp16 = expand_dims(axes = expand_dims_0_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_0_cast_fp16")];
15
+ tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
16
+ tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
17
+ tensor<fp16, [1, 1, 480400]> expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0_cast_fp16)[name = tensor<string, []>("expand_dims_4_cast_fp16")];
18
+ tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
19
+ tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
20
+ tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
21
+ tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
22
+ tensor<fp16, [201, 1, 400]> expand_dims_1_to_fp16 = const()[name = tensor<string, []>("expand_dims_1_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
23
+ tensor<fp16, [1, 201, 3001]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
24
+ tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
25
+ tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
26
+ tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
27
+ tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
28
+ tensor<fp16, [201, 1, 400]> expand_dims_2_to_fp16 = const()[name = tensor<string, []>("expand_dims_2_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(160960)))];
29
+ tensor<fp16, [1, 201, 3001]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
30
+ tensor<int32, [1]> squeeze_0_axes_0 = const()[name = tensor<string, []>("squeeze_0_axes_0"), val = tensor<int32, [1]>([0])];
31
+ tensor<fp16, [201, 3001]> squeeze_0_cast_fp16 = squeeze(axes = squeeze_0_axes_0, x = conv_0_cast_fp16)[name = tensor<string, []>("squeeze_0_cast_fp16")];
32
+ tensor<int32, [1]> squeeze_1_axes_0 = const()[name = tensor<string, []>("squeeze_1_axes_0"), val = tensor<int32, [1]>([0])];
33
+ tensor<fp16, [201, 3001]> squeeze_1_cast_fp16 = squeeze(axes = squeeze_1_axes_0, x = conv_1_cast_fp16)[name = tensor<string, []>("squeeze_1_cast_fp16")];
34
+ tensor<fp16, [201, 3001]> square_0_cast_fp16 = square(x = squeeze_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
35
+ tensor<fp16, [201, 3001]> square_1_cast_fp16 = square(x = squeeze_1_cast_fp16)[name = tensor<string, []>("square_1_cast_fp16")];
36
+ tensor<fp16, [201, 3001]> add_1_cast_fp16 = add(x = square_0_cast_fp16, y = square_1_cast_fp16)[name = tensor<string, []>("add_1_cast_fp16")];
37
+ tensor<fp16, [201, 3001]> magnitudes_1_cast_fp16 = identity(x = add_1_cast_fp16)[name = tensor<string, []>("magnitudes_1_cast_fp16")];
38
+ tensor<int32, [2]> magnitudes_begin_0 = const()[name = tensor<string, []>("magnitudes_begin_0"), val = tensor<int32, [2]>([0, 0])];
39
+ tensor<int32, [2]> magnitudes_end_0 = const()[name = tensor<string, []>("magnitudes_end_0"), val = tensor<int32, [2]>([201, 3000])];
40
+ tensor<bool, [2]> magnitudes_end_mask_0 = const()[name = tensor<string, []>("magnitudes_end_mask_0"), val = tensor<bool, [2]>([true, false])];
41
+ tensor<fp16, [201, 3000]> magnitudes_cast_fp16 = slice_by_index(begin = magnitudes_begin_0, end = magnitudes_end_0, end_mask = magnitudes_end_mask_0, x = magnitudes_1_cast_fp16)[name = tensor<string, []>("magnitudes_cast_fp16")];
42
+ tensor<bool, []> mel_spec_1_transpose_x_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_x_0"), val = tensor<bool, []>(false)];
43
+ tensor<bool, []> mel_spec_1_transpose_y_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_y_0"), val = tensor<bool, []>(false)];
44
+ tensor<fp16, [128, 201]> mel_filters_to_fp16 = const()[name = tensor<string, []>("mel_filters_to_fp16"), val = tensor<fp16, [128, 201]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(321856)))];
45
+ tensor<fp16, [128, 3000]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
46
+ tensor<fp16, []> var_41_to_fp16 = const()[name = tensor<string, []>("op_41_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
47
+ tensor<fp16, [128, 3000]> mel_spec_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_41_to_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
48
+ tensor<fp16, []> log_0_epsilon_0_to_fp16 = const()[name = tensor<string, []>("log_0_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
49
+ tensor<fp16, [128, 3000]> log_0_cast_fp16 = log(epsilon = log_0_epsilon_0_to_fp16, x = mel_spec_cast_fp16)[name = tensor<string, []>("log_0_cast_fp16")];
50
+ tensor<fp16, []> mul_0_y_0_to_fp16 = const()[name = tensor<string, []>("mul_0_y_0_to_fp16"), val = tensor<fp16, []>(0x1.bccp-2)];
51
+ tensor<fp16, [128, 3000]> mul_0_cast_fp16 = mul(x = log_0_cast_fp16, y = mul_0_y_0_to_fp16)[name = tensor<string, []>("mul_0_cast_fp16")];
52
+ tensor<bool, []> var_44_keep_dims_0 = const()[name = tensor<string, []>("op_44_keep_dims_0"), val = tensor<bool, []>(false)];
53
+ tensor<fp16, []> var_44_cast_fp16 = reduce_max(keep_dims = var_44_keep_dims_0, x = mul_0_cast_fp16)[name = tensor<string, []>("op_44_cast_fp16")];
54
+ tensor<fp16, []> var_46_to_fp16 = const()[name = tensor<string, []>("op_46_to_fp16"), val = tensor<fp16, []>(0x1p+3)];
55
+ tensor<fp16, []> var_47_cast_fp16 = sub(x = var_44_cast_fp16, y = var_46_to_fp16)[name = tensor<string, []>("op_47_cast_fp16")];
56
+ tensor<fp16, [128, 3000]> log_spec_3_cast_fp16 = maximum(x = mul_0_cast_fp16, y = var_47_cast_fp16)[name = tensor<string, []>("log_spec_3_cast_fp16")];
57
+ tensor<fp16, []> var_50_to_fp16 = const()[name = tensor<string, []>("op_50_to_fp16"), val = tensor<fp16, []>(0x1p+2)];
58
+ tensor<fp16, [128, 3000]> var_51_cast_fp16 = add(x = log_spec_3_cast_fp16, y = var_50_to_fp16)[name = tensor<string, []>("op_51_cast_fp16")];
59
+ tensor<fp16, []> _inversed_log_spec_y_0_to_fp16 = const()[name = tensor<string, []>("_inversed_log_spec_y_0_to_fp16"), val = tensor<fp16, []>(0x1p-2)];
60
+ tensor<fp16, [128, 3000]> _inversed_log_spec_cast_fp16 = mul(x = var_51_cast_fp16, y = _inversed_log_spec_y_0_to_fp16)[name = tensor<string, []>("_inversed_log_spec_cast_fp16")];
61
+ tensor<int32, [1]> var_55_axes_0 = const()[name = tensor<string, []>("op_55_axes_0"), val = tensor<int32, [1]>([0])];
62
+ tensor<fp16, [1, 128, 3000]> var_55_cast_fp16 = expand_dims(axes = var_55_axes_0, x = _inversed_log_spec_cast_fp16)[name = tensor<string, []>("op_55_cast_fp16")];
63
+ tensor<int32, [1]> var_62_axes_0 = const()[name = tensor<string, []>("op_62_axes_0"), val = tensor<int32, [1]>([2])];
64
+ tensor<fp16, [1, 128, 1, 3000]> melspectrogram_features = expand_dims(axes = var_62_axes_0, x = var_55_cast_fp16)[name = tensor<string, []>("op_62_cast_fp16")];
65
+ } -> (melspectrogram_features);
66
+ }
openai_whisper-large-v3_turbo/MelSpectrogram.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eb5f443dc3a0a0ee0b5931e2c1a2365e6ab557b58f6ca46af26ea09ec1f7d57
3
+ size 373376
openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09cdcc47a8297a8441b48a3b2859cc75f57c808bc11654f92678188c923533f8
3
+ size 243
openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b49d28fd16bdc6c790a6cca7ff99f83838cec338d84fe44469fa93f16953489
3
+ size 637
openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1 × 51866)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1, 51866]",
13
+ "name" : "logits",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float16",
20
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1, 40960, 1, 1]",
23
+ "name" : "key_cache_updates",
24
+ "type" : "MultiArray"
25
+ },
26
+ {
27
+ "hasShapeFlexibility" : "0",
28
+ "isOptional" : "0",
29
+ "dataType" : "Float16",
30
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 1)",
31
+ "shortDescription" : "",
32
+ "shape" : "[1, 40960, 1, 1]",
33
+ "name" : "value_cache_updates",
34
+ "type" : "MultiArray"
35
+ },
36
+ {
37
+ "hasShapeFlexibility" : "0",
38
+ "isOptional" : "0",
39
+ "dataType" : "Float16",
40
+ "formattedType" : "MultiArray (Float16 1 × 1500)",
41
+ "shortDescription" : "",
42
+ "shape" : "[1, 1500]",
43
+ "name" : "alignment_heads_weights",
44
+ "type" : "MultiArray"
45
+ }
46
+ ],
47
+ "modelParameters" : [
48
+
49
+ ],
50
+ "specificationVersion" : 7,
51
+ "mlProgramOperationTypeHistogram" : {
52
+ "Split" : 2,
53
+ "Concat" : 3,
54
+ "Ios16.rsqrt" : 97,
55
+ "Ios16.mul" : 386,
56
+ "Squeeze" : 1,
57
+ "SliceByIndex" : 20,
58
+ "Ios16.sub" : 98,
59
+ "Transpose" : 1,
60
+ "Ios16.conv" : 320,
61
+ "Ios16.add" : 290,
62
+ "Ios16.linear" : 1,
63
+ "Ios16.matmul" : 128,
64
+ "Ios16.gelu" : 32,
65
+ "Ios16.reduceMean" : 195,
66
+ "ExpandDims" : 6,
67
+ "Ios16.batchNorm" : 97,
68
+ "Ios16.gather" : 2,
69
+ "Ios16.reshape" : 256,
70
+ "Ios16.softmax" : 64
71
+ },
72
+ "computePrecision" : "Mixed (Float16, Int32)",
73
+ "isUpdatable" : "0",
74
+ "availability" : {
75
+ "macOS" : "13.0",
76
+ "tvOS" : "16.0",
77
+ "visionOS" : "1.0",
78
+ "watchOS" : "9.0",
79
+ "iOS" : "16.0",
80
+ "macCatalyst" : "16.0"
81
+ },
82
+ "modelType" : {
83
+ "name" : "MLModelType_mlProgram"
84
+ },
85
+ "userDefinedMetadata" : {
86
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
87
+ "com.github.apple.coremltools.source" : "torch==2.2.1",
88
+ "com.github.apple.coremltools.version" : "7.1"
89
+ },
90
+ "inputSchema" : [
91
+ {
92
+ "hasShapeFlexibility" : "0",
93
+ "isOptional" : "0",
94
+ "dataType" : "Int32",
95
+ "formattedType" : "MultiArray (Int32 1)",
96
+ "shortDescription" : "",
97
+ "shape" : "[1]",
98
+ "name" : "input_ids",
99
+ "type" : "MultiArray"
100
+ },
101
+ {
102
+ "hasShapeFlexibility" : "0",
103
+ "isOptional" : "0",
104
+ "dataType" : "Int32",
105
+ "formattedType" : "MultiArray (Int32 1)",
106
+ "shortDescription" : "",
107
+ "shape" : "[1]",
108
+ "name" : "cache_length",
109
+ "type" : "MultiArray"
110
+ },
111
+ {
112
+ "hasShapeFlexibility" : "0",
113
+ "isOptional" : "0",
114
+ "dataType" : "Float16",
115
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 224)",
116
+ "shortDescription" : "",
117
+ "shape" : "[1, 40960, 1, 224]",
118
+ "name" : "key_cache",
119
+ "type" : "MultiArray"
120
+ },
121
+ {
122
+ "hasShapeFlexibility" : "0",
123
+ "isOptional" : "0",
124
+ "dataType" : "Float16",
125
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 224)",
126
+ "shortDescription" : "",
127
+ "shape" : "[1, 40960, 1, 224]",
128
+ "name" : "value_cache",
129
+ "type" : "MultiArray"
130
+ },
131
+ {
132
+ "hasShapeFlexibility" : "0",
133
+ "isOptional" : "0",
134
+ "dataType" : "Float16",
135
+ "formattedType" : "MultiArray (Float16 1 × 224)",
136
+ "shortDescription" : "",
137
+ "shape" : "[1, 224]",
138
+ "name" : "kv_cache_update_mask",
139
+ "type" : "MultiArray"
140
+ },
141
+ {
142
+ "hasShapeFlexibility" : "0",
143
+ "isOptional" : "0",
144
+ "dataType" : "Float16",
145
+ "formattedType" : "MultiArray (Float16 1 × 1280 × 1 × 1500)",
146
+ "shortDescription" : "",
147
+ "shape" : "[1, 1280, 1, 1500]",
148
+ "name" : "encoder_output_embeds",
149
+ "type" : "MultiArray"
150
+ },
151
+ {
152
+ "hasShapeFlexibility" : "0",
153
+ "isOptional" : "0",
154
+ "dataType" : "Float16",
155
+ "formattedType" : "MultiArray (Float16 1 × 224)",
156
+ "shortDescription" : "",
157
+ "shape" : "[1, 224]",
158
+ "name" : "decoder_key_padding_mask",
159
+ "type" : "MultiArray"
160
+ }
161
+ ],
162
+ "generatedClassName" : "TextDecoder",
163
+ "method" : "predict"
164
+ }
165
+ ]
openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
openai_whisper-large-v3_turbo/TextDecoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:745c0c3896c41cd6ad01b6c3ed852e0bb1cb2fd1ef579017c5cc9a8aff1d3c66
3
+ size 1813201716
openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:352d00fa1b9b29c06b538013f6b2884029d673a2a246abcd783d5581c4f04c83
3
+ size 243
openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a91550bdd77216fd43a9b00251b6b5aebbcb2a2eee5ca92b2b3cdd0b8aa75971
3
+ size 382
openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/metadata.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 3)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 40960, 1, 3]",
13
+ "name" : "key_cache_prefill",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float16",
20
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 3)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1, 40960, 1, 3]",
23
+ "name" : "value_cache_prefill",
24
+ "type" : "MultiArray"
25
+ }
26
+ ],
27
+ "modelParameters" : [
28
+
29
+ ],
30
+ "specificationVersion" : 8,
31
+ "mlProgramOperationTypeHistogram" : {
32
+ "Ios17.mul" : 1,
33
+ "Ios17.cast" : 1,
34
+ "Ios17.sub" : 1,
35
+ "Ios17.reshape" : 2,
36
+ "Ios17.add" : 1,
37
+ "Ios17.gather" : 2
38
+ },
39
+ "computePrecision" : "Mixed (Float16, Int16, Int32)",
40
+ "isUpdatable" : "0",
41
+ "availability" : {
42
+ "macOS" : "14.0",
43
+ "tvOS" : "17.0",
44
+ "visionOS" : "1.0",
45
+ "watchOS" : "10.0",
46
+ "iOS" : "17.0",
47
+ "macCatalyst" : "17.0"
48
+ },
49
+ "modelType" : {
50
+ "name" : "MLModelType_mlProgram"
51
+ },
52
+ "userDefinedMetadata" : {
53
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
54
+ "com.github.apple.coremltools.source" : "torch==2.2.1",
55
+ "com.github.apple.coremltools.version" : "7.1"
56
+ },
57
+ "inputSchema" : [
58
+ {
59
+ "hasShapeFlexibility" : "0",
60
+ "isOptional" : "0",
61
+ "dataType" : "Int32",
62
+ "formattedType" : "MultiArray (Int32 1)",
63
+ "shortDescription" : "",
64
+ "shape" : "[1]",
65
+ "name" : "task",
66
+ "type" : "MultiArray"
67
+ },
68
+ {
69
+ "hasShapeFlexibility" : "0",
70
+ "isOptional" : "0",
71
+ "dataType" : "Int32",
72
+ "formattedType" : "MultiArray (Int32 1)",
73
+ "shortDescription" : "",
74
+ "shape" : "[1]",
75
+ "name" : "language",
76
+ "type" : "MultiArray"
77
+ }
78
+ ],
79
+ "generatedClassName" : "TextDecoderContextPrefill",
80
+ "method" : "predict"
81
+ }
82
+ ]
openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/model.mil ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.2.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
3
+ {
4
+ func main<ios17>(tensor<int32, [1]> language, tensor<int32, [1]> task) {
5
+ tensor<int32, []> var_6 = const()[name = tensor<string, []>("op_6"), val = tensor<int32, []>(50259)];
6
+ tensor<int32, [1]> var_7 = sub(x = language, y = var_6)[name = tensor<string, []>("op_7")];
7
+ tensor<int32, []> var_8 = const()[name = tensor<string, []>("op_8"), val = tensor<int32, []>(2)];
8
+ tensor<int32, [1]> var_9 = mul(x = var_7, y = var_8)[name = tensor<string, []>("op_9")];
9
+ tensor<int32, [1]> input = add(x = var_9, y = task)[name = tensor<string, []>("input")];
10
+ tensor<int32, []> var_15_axis_0 = const()[name = tensor<string, []>("op_15_axis_0"), val = tensor<int32, []>(0)];
11
+ tensor<int32, []> var_15_batch_dims_0 = const()[name = tensor<string, []>("op_15_batch_dims_0"), val = tensor<int32, []>(0)];
12
+ tensor<bool, []> var_15_validate_indices_0 = const()[name = tensor<string, []>("op_15_validate_indices_0"), val = tensor<bool, []>(false)];
13
+ tensor<fp16, [200, 122880]> key_cache_lut_weight_to_fp16 = const()[name = tensor<string, []>("key_cache_lut_weight_to_fp16"), val = tensor<fp16, [200, 122880]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
14
+ tensor<string, []> input_to_int16_dtype_0 = const()[name = tensor<string, []>("input_to_int16_dtype_0"), val = tensor<string, []>("int16")];
15
+ tensor<int16, [1]> cast_6 = cast(dtype = input_to_int16_dtype_0, x = input)[name = tensor<string, []>("cast_6")];
16
+ tensor<fp16, [1, 122880]> var_15_cast_fp16_cast_int16 = gather(axis = var_15_axis_0, batch_dims = var_15_batch_dims_0, indices = cast_6, validate_indices = var_15_validate_indices_0, x = key_cache_lut_weight_to_fp16)[name = tensor<string, []>("op_15_cast_fp16_cast_int16")];
17
+ tensor<int32, [4]> var_20 = const()[name = tensor<string, []>("op_20"), val = tensor<int32, [4]>([1, 40960, 1, 3])];
18
+ tensor<fp16, [1, 40960, 1, 3]> key_cache_prefill = reshape(shape = var_20, x = var_15_cast_fp16_cast_int16)[name = tensor<string, []>("op_21_cast_fp16")];
19
+ tensor<int32, []> var_25_axis_0 = const()[name = tensor<string, []>("op_25_axis_0"), val = tensor<int32, []>(0)];
20
+ tensor<int32, []> var_25_batch_dims_0 = const()[name = tensor<string, []>("op_25_batch_dims_0"), val = tensor<int32, []>(0)];
21
+ tensor<bool, []> var_25_validate_indices_0 = const()[name = tensor<string, []>("op_25_validate_indices_0"), val = tensor<bool, []>(false)];
22
+ tensor<fp16, [200, 122880]> value_cache_lut_weight_to_fp16 = const()[name = tensor<string, []>("value_cache_lut_weight_to_fp16"), val = tensor<fp16, [200, 122880]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49152128)))];
23
+ tensor<fp16, [1, 122880]> var_25_cast_fp16_cast_int16 = gather(axis = var_25_axis_0, batch_dims = var_25_batch_dims_0, indices = cast_6, validate_indices = var_25_validate_indices_0, x = value_cache_lut_weight_to_fp16)[name = tensor<string, []>("op_25_cast_fp16_cast_int16")];
24
+ tensor<int32, [4]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [4]>([1, 40960, 1, 3])];
25
+ tensor<fp16, [1, 40960, 1, 3]> value_cache_prefill = reshape(shape = var_30, x = var_25_cast_fp16_cast_int16)[name = tensor<string, []>("op_31_cast_fp16")];
26
+ } -> (key_cache_prefill, value_cache_prefill);
27
+ }
openai_whisper-large-v3_turbo/TextDecoderContextPrefill.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40b8dc9229eb9627feff2abc3eae6370df0a1536334b11bc26ec307ebc463bfe
3
+ size 98304192
openai_whisper-large-v3_turbo/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"_name_or_path": "openai/whisper-large-v3", "activation_dropout": 0.0, "activation_function": "gelu", "apply_spec_augment": false, "architectures": ["WhisperForConditionalGeneration"], "attention_dropout": 0.0, "begin_suppress_tokens": [220, 50257], "bos_token_id": 50257, "classifier_proj_size": 256, "d_model": 1280, "decoder_attention_heads": 20, "decoder_ffn_dim": 5120, "decoder_layerdrop": 0.0, "decoder_layers": 32, "decoder_start_token_id": 50258, "dropout": 0.0, "encoder_attention_heads": 20, "encoder_ffn_dim": 5120, "encoder_layerdrop": 0.0, "encoder_layers": 32, "eos_token_id": 50257, "init_std": 0.02, "is_encoder_decoder": true, "mask_feature_length": 10, "mask_feature_min_masks": 0, "mask_feature_prob": 0.0, "mask_time_length": 10, "mask_time_min_masks": 2, "mask_time_prob": 0.05, "max_length": 448, "max_source_positions": 1500, "max_target_positions": 448, "median_filter_width": 7, "model_type": "whisper", "num_hidden_layers": 32, "num_mel_bins": 128, "pad_token_id": 50256, "scale_embedding": false, "torch_dtype": "float16", "transformers_version": "4.36.0.dev0", "use_cache": true, "use_weighted_layer_sum": false, "vocab_size": 51866}
openai_whisper-large-v3_turbo/generation_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"alignment_heads": [[7, 0], [10, 17], [12, 18], [13, 12], [16, 1], [17, 14], [19, 11], [21, 4], [24, 1], [25, 6]], "begin_suppress_tokens": [220, 50257], "bos_token_id": 50257, "decoder_start_token_id": 50258, "eos_token_id": 50257, "forced_decoder_ids": [[1, null], [2, 50360]], "is_multilingual": true, "lang_to_id": {"<|af|>": 50327, "<|am|>": 50334, "<|ar|>": 50272, "<|as|>": 50350, "<|az|>": 50304, "<|ba|>": 50355, "<|be|>": 50330, "<|bg|>": 50292, "<|bn|>": 50302, "<|bo|>": 50347, "<|br|>": 50309, "<|bs|>": 50315, "<|ca|>": 50270, "<|cs|>": 50283, "<|cy|>": 50297, "<|da|>": 50285, "<|de|>": 50261, "<|el|>": 50281, "<|en|>": 50259, "<|es|>": 50262, "<|et|>": 50307, "<|eu|>": 50310, "<|fa|>": 50300, "<|fi|>": 50277, "<|fo|>": 50338, "<|fr|>": 50265, "<|gl|>": 50319, "<|gu|>": 50333, "<|haw|>": 50352, "<|ha|>": 50354, "<|he|>": 50279, "<|hi|>": 50276, "<|hr|>": 50291, "<|ht|>": 50339, "<|hu|>": 50286, "<|hy|>": 50312, "<|id|>": 50275, "<|is|>": 50311, "<|it|>": 50274, "<|ja|>": 50266, "<|jw|>": 50356, "<|ka|>": 50329, "<|kk|>": 50316, "<|km|>": 50323, "<|kn|>": 50306, "<|ko|>": 50264, "<|la|>": 50294, "<|lb|>": 50345, "<|ln|>": 50353, "<|lo|>": 50336, "<|lt|>": 50293, "<|lv|>": 50301, "<|mg|>": 50349, "<|mi|>": 50295, "<|mk|>": 50308, "<|ml|>": 50296, "<|mn|>": 50314, "<|mr|>": 50320, "<|ms|>": 50282, "<|mt|>": 50343, "<|my|>": 50346, "<|ne|>": 50313, "<|nl|>": 50271, "<|nn|>": 50342, "<|no|>": 50288, "<|oc|>": 50328, "<|pa|>": 50321, "<|pl|>": 50269, "<|ps|>": 50340, "<|pt|>": 50267, "<|ro|>": 50284, "<|ru|>": 50263, "<|sa|>": 50344, "<|sd|>": 50332, "<|si|>": 50322, "<|sk|>": 50298, "<|sl|>": 50305, "<|sn|>": 50324, "<|so|>": 50326, "<|sq|>": 50317, "<|sr|>": 50303, "<|su|>": 50357, "<|sv|>": 50273, "<|sw|>": 50318, "<|ta|>": 50287, "<|te|>": 50299, "<|tg|>": 50331, "<|th|>": 50289, "<|tk|>": 50341, "<|tl|>": 50348, "<|tr|>": 50268, "<|tt|>": 50351, "<|uk|>": 50280, "<|ur|>": 50290, "<|uz|>": 50337, "<|vi|>": 50278, "<|yi|>": 50335, "<|yo|>": 50325, "<|yue|>": 50358, "<|zh|>": 50260}, "max_initial_timestamp_index": 50, "max_length": 448, "no_timestamps_token_id": 50364, "pad_token_id": 50257, "prev_sot_token_id": 50362, "return_timestamps": false, "suppress_tokens": [1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50359, 50360, 50361, 50362, 50363], "task_to_id": {"transcribe": 50360, "translate": 50359}, "transformers_version": "4.36.0.dev0"}