whisperkittools-81ba3338e9e50affc6da63b97dd26b9a9d34b2ff generated files: openai_whisper-tiny.en
Browse files- openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil +1 -1
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/weights/weight.bin +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/weights/weight.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json +8 -8
- openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil +53 -53
- openai_whisper-tiny.en/TextDecoder.mlmodelc/weights/weight.bin +1 -1
openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
|
5 |
tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.2.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
|
5 |
tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 16422784
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5988bb277579ec5991a9feac97a6f1443087b95c12ef5e15a44b224da59b6d17
|
3 |
size 16422784
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [480000]> audio) {
|
5 |
tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.2.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [480000]> audio) {
|
5 |
tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 354080
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba16948ef96b40599c03ffabd7b47c75e2b542727be66c39390016e593445ceb
|
3 |
size 354080
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a3e0bfa2afd1214f7331cf018446b178cac5d9435b62d6d8a137aa774db6bd6
|
3 |
size 243
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 633
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c220318d8d76d90618a478848e19a2ef820264b3e9e78d4da479851f7da1e2d2
|
3 |
size 633
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json
CHANGED
@@ -112,9 +112,9 @@
|
|
112 |
"hasShapeFlexibility" : "0",
|
113 |
"isOptional" : "0",
|
114 |
"dataType" : "Float16",
|
115 |
-
"formattedType" : "MultiArray (Float16 1 × 1536 × 1 ×
|
116 |
"shortDescription" : "",
|
117 |
-
"shape" : "[1, 1536, 1,
|
118 |
"name" : "key_cache",
|
119 |
"type" : "MultiArray"
|
120 |
},
|
@@ -122,9 +122,9 @@
|
|
122 |
"hasShapeFlexibility" : "0",
|
123 |
"isOptional" : "0",
|
124 |
"dataType" : "Float16",
|
125 |
-
"formattedType" : "MultiArray (Float16 1 × 1536 × 1 ×
|
126 |
"shortDescription" : "",
|
127 |
-
"shape" : "[1, 1536, 1,
|
128 |
"name" : "value_cache",
|
129 |
"type" : "MultiArray"
|
130 |
},
|
@@ -132,9 +132,9 @@
|
|
132 |
"hasShapeFlexibility" : "0",
|
133 |
"isOptional" : "0",
|
134 |
"dataType" : "Float16",
|
135 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
136 |
"shortDescription" : "",
|
137 |
-
"shape" : "[1,
|
138 |
"name" : "kv_cache_update_mask",
|
139 |
"type" : "MultiArray"
|
140 |
},
|
@@ -152,9 +152,9 @@
|
|
152 |
"hasShapeFlexibility" : "0",
|
153 |
"isOptional" : "0",
|
154 |
"dataType" : "Float16",
|
155 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
156 |
"shortDescription" : "",
|
157 |
-
"shape" : "[1,
|
158 |
"name" : "decoder_key_padding_mask",
|
159 |
"type" : "MultiArray"
|
160 |
}
|
|
|
112 |
"hasShapeFlexibility" : "0",
|
113 |
"isOptional" : "0",
|
114 |
"dataType" : "Float16",
|
115 |
+
"formattedType" : "MultiArray (Float16 1 × 1536 × 1 × 448)",
|
116 |
"shortDescription" : "",
|
117 |
+
"shape" : "[1, 1536, 1, 448]",
|
118 |
"name" : "key_cache",
|
119 |
"type" : "MultiArray"
|
120 |
},
|
|
|
122 |
"hasShapeFlexibility" : "0",
|
123 |
"isOptional" : "0",
|
124 |
"dataType" : "Float16",
|
125 |
+
"formattedType" : "MultiArray (Float16 1 × 1536 × 1 × 448)",
|
126 |
"shortDescription" : "",
|
127 |
+
"shape" : "[1, 1536, 1, 448]",
|
128 |
"name" : "value_cache",
|
129 |
"type" : "MultiArray"
|
130 |
},
|
|
|
132 |
"hasShapeFlexibility" : "0",
|
133 |
"isOptional" : "0",
|
134 |
"dataType" : "Float16",
|
135 |
+
"formattedType" : "MultiArray (Float16 1 × 448)",
|
136 |
"shortDescription" : "",
|
137 |
+
"shape" : "[1, 448]",
|
138 |
"name" : "kv_cache_update_mask",
|
139 |
"type" : "MultiArray"
|
140 |
},
|
|
|
152 |
"hasShapeFlexibility" : "0",
|
153 |
"isOptional" : "0",
|
154 |
"dataType" : "Float16",
|
155 |
+
"formattedType" : "MultiArray (Float16 1 × 448)",
|
156 |
"shortDescription" : "",
|
157 |
+
"shape" : "[1, 448]",
|
158 |
"name" : "decoder_key_padding_mask",
|
159 |
"type" : "MultiArray"
|
160 |
}
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "
|
3 |
{
|
4 |
-
func main<ios16>(tensor<int32, [1]> cache_length, tensor<fp16, [1,
|
5 |
tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
|
6 |
tensor<int32, []> var_24_batch_dims_0 = const()[name = tensor<string, []>("op_24_batch_dims_0"), val = tensor<int32, []>(0)];
|
7 |
tensor<fp16, [51864, 384]> embed_tokens_weight_to_fp16 = const()[name = tensor<string, []>("embed_tokens_weight_to_fp16"), val = tensor<fp16, [51864, 384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
@@ -17,10 +17,10 @@ program(1.0)
|
|
17 |
tensor<fp16, [1, 384, 1, 1]> inputs_1_cast_fp16 = expand_dims(axes = inputs_1_axes_0, x = var_42_cast_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
|
18 |
tensor<int32, [4]> tile_0 = const()[name = tensor<string, []>("tile_0"), val = tensor<int32, [4]>([384, 384, 384, 384])];
|
19 |
tensor<int32, []> var_47_axis_0 = const()[name = tensor<string, []>("op_47_axis_0"), val = tensor<int32, []>(1)];
|
20 |
-
tensor<fp16, [1, 384, 1,
|
21 |
tensor<int32, [4]> tile_1 = const()[name = tensor<string, []>("tile_1"), val = tensor<int32, [4]>([384, 384, 384, 384])];
|
22 |
tensor<int32, []> var_54_axis_0 = const()[name = tensor<string, []>("op_54_axis_0"), val = tensor<int32, []>(1)];
|
23 |
-
tensor<fp16, [1, 384, 1,
|
24 |
tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
|
25 |
tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
|
26 |
tensor<bool, []> var_72 = const()[name = tensor<string, []>("op_72"), val = tensor<bool, []>(true)];
|
@@ -62,34 +62,34 @@ program(1.0)
|
|
62 |
tensor<fp16, [384]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41064896)))];
|
63 |
tensor<fp16, [1, 384, 1, 1]> current_value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = var_121, groups = var_71, pad = current_value_1_pad_0, pad_type = current_value_1_pad_type_0, strides = var_119, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("current_value_1_cast_fp16")];
|
64 |
tensor<int32, [1]> var_125_axes_0 = const()[name = tensor<string, []>("op_125_axes_0"), val = tensor<int32, [1]>([1])];
|
65 |
-
tensor<fp16, [1, 1,
|
66 |
tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([2])];
|
67 |
-
tensor<fp16, [1, 1, 1,
|
68 |
-
tensor<fp16, [1, 384, 1,
|
69 |
tensor<fp16, []> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
|
70 |
-
tensor<fp16, [1, 1, 1,
|
71 |
-
tensor<fp16, [1, 384, 1,
|
72 |
-
tensor<fp16, [1, 384, 1,
|
73 |
-
tensor<fp16, [1, 384, 1,
|
74 |
-
tensor<fp16, [1, 384, 1,
|
75 |
-
tensor<fp16, [1, 384, 1,
|
76 |
tensor<int32, [4]> var_137 = const()[name = tensor<string, []>("op_137"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
77 |
tensor<fp16, [1, 6, 64, 1]> var_138_cast_fp16 = reshape(shape = var_137, x = query_1_cast_fp16)[name = tensor<string, []>("op_138_cast_fp16")];
|
78 |
tensor<fp16, []> var_139_to_fp16 = const()[name = tensor<string, []>("op_139_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
79 |
tensor<fp16, [1, 6, 64, 1]> var_140_cast_fp16 = mul(x = var_138_cast_fp16, y = var_139_to_fp16)[name = tensor<string, []>("op_140_cast_fp16")];
|
80 |
tensor<int32, [4]> var_141 = const()[name = tensor<string, []>("op_141"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
81 |
-
tensor<fp16, [1, 6, 64,
|
82 |
tensor<bool, []> mh_w_1_transpose_x_0 = const()[name = tensor<string, []>("mh_w_1_transpose_x_0"), val = tensor<bool, []>(true)];
|
83 |
tensor<bool, []> mh_w_1_transpose_y_0 = const()[name = tensor<string, []>("mh_w_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
84 |
-
tensor<fp16, [1, 6, 1,
|
85 |
tensor<int32, [1]> var_146_axes_0 = const()[name = tensor<string, []>("op_146_axes_0"), val = tensor<int32, [1]>([1])];
|
86 |
-
tensor<fp16, [1, 1,
|
87 |
tensor<int32, [1]> var_147_axes_0 = const()[name = tensor<string, []>("op_147_axes_0"), val = tensor<int32, [1]>([2])];
|
88 |
-
tensor<fp16, [1, 1, 1,
|
89 |
-
tensor<fp16, [1, 6, 1,
|
90 |
-
tensor<fp16, [1, 6, 1,
|
91 |
tensor<int32, [4]> var_151 = const()[name = tensor<string, []>("op_151"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
92 |
-
tensor<fp16, [1, 6, 64,
|
93 |
tensor<bool, []> attn_1_transpose_x_0 = const()[name = tensor<string, []>("attn_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
94 |
tensor<bool, []> attn_1_transpose_y_0 = const()[name = tensor<string, []>("attn_1_transpose_y_0"), val = tensor<bool, []>(true)];
|
95 |
tensor<fp16, [1, 6, 64, 1]> attn_1_cast_fp16 = matmul(transpose_x = attn_1_transpose_x_0, transpose_y = attn_1_transpose_y_0, x = var_152_cast_fp16, y = var_150_cast_fp16)[name = tensor<string, []>("attn_1_cast_fp16")];
|
@@ -233,25 +233,25 @@ program(1.0)
|
|
233 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(45503104)))];
|
234 |
tensor<fp16, [384]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(45798080)))];
|
235 |
tensor<fp16, [1, 384, 1, 1]> current_value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = var_335, groups = var_285, pad = current_value_3_pad_0, pad_type = current_value_3_pad_type_0, strides = var_333, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor<string, []>("current_value_3_cast_fp16")];
|
236 |
-
tensor<fp16, [1, 384, 1,
|
237 |
-
tensor<fp16, [1, 384, 1,
|
238 |
-
tensor<fp16, [1, 384, 1,
|
239 |
-
tensor<fp16, [1, 384, 1,
|
240 |
-
tensor<fp16, [1, 384, 1,
|
241 |
-
tensor<fp16, [1, 384, 1,
|
242 |
tensor<int32, [4]> var_351 = const()[name = tensor<string, []>("op_351"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
243 |
tensor<fp16, [1, 6, 64, 1]> var_352_cast_fp16 = reshape(shape = var_351, x = query_5_cast_fp16)[name = tensor<string, []>("op_352_cast_fp16")];
|
244 |
tensor<fp16, []> var_353_to_fp16 = const()[name = tensor<string, []>("op_353_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
245 |
tensor<fp16, [1, 6, 64, 1]> var_354_cast_fp16 = mul(x = var_352_cast_fp16, y = var_353_to_fp16)[name = tensor<string, []>("op_354_cast_fp16")];
|
246 |
tensor<int32, [4]> var_355 = const()[name = tensor<string, []>("op_355"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
247 |
-
tensor<fp16, [1, 6, 64,
|
248 |
tensor<bool, []> mh_w_7_transpose_x_0 = const()[name = tensor<string, []>("mh_w_7_transpose_x_0"), val = tensor<bool, []>(true)];
|
249 |
tensor<bool, []> mh_w_7_transpose_y_0 = const()[name = tensor<string, []>("mh_w_7_transpose_y_0"), val = tensor<bool, []>(false)];
|
250 |
-
tensor<fp16, [1, 6, 1,
|
251 |
-
tensor<fp16, [1, 6, 1,
|
252 |
-
tensor<fp16, [1, 6, 1,
|
253 |
tensor<int32, [4]> var_365 = const()[name = tensor<string, []>("op_365"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
254 |
-
tensor<fp16, [1, 6, 64,
|
255 |
tensor<bool, []> attn_5_transpose_x_0 = const()[name = tensor<string, []>("attn_5_transpose_x_0"), val = tensor<bool, []>(false)];
|
256 |
tensor<bool, []> attn_5_transpose_y_0 = const()[name = tensor<string, []>("attn_5_transpose_y_0"), val = tensor<bool, []>(true)];
|
257 |
tensor<fp16, [1, 6, 64, 1]> attn_5_cast_fp16 = matmul(transpose_x = attn_5_transpose_x_0, transpose_y = attn_5_transpose_y_0, x = var_366_cast_fp16, y = var_364_cast_fp16)[name = tensor<string, []>("attn_5_cast_fp16")];
|
@@ -395,25 +395,25 @@ program(1.0)
|
|
395 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50236288)))];
|
396 |
tensor<fp16, [384]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50531264)))];
|
397 |
tensor<fp16, [1, 384, 1, 1]> current_value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = var_553, groups = var_503, pad = current_value_5_pad_0, pad_type = current_value_5_pad_type_0, strides = var_551, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor<string, []>("current_value_5_cast_fp16")];
|
398 |
-
tensor<fp16, [1, 384, 1,
|
399 |
-
tensor<fp16, [1, 384, 1,
|
400 |
-
tensor<fp16, [1, 384, 1,
|
401 |
-
tensor<fp16, [1, 384, 1,
|
402 |
-
tensor<fp16, [1, 384, 1,
|
403 |
-
tensor<fp16, [1, 384, 1,
|
404 |
tensor<int32, [4]> var_569 = const()[name = tensor<string, []>("op_569"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
405 |
tensor<fp16, [1, 6, 64, 1]> var_570_cast_fp16 = reshape(shape = var_569, x = query_9_cast_fp16)[name = tensor<string, []>("op_570_cast_fp16")];
|
406 |
tensor<fp16, []> var_571_to_fp16 = const()[name = tensor<string, []>("op_571_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
407 |
tensor<fp16, [1, 6, 64, 1]> var_572_cast_fp16 = mul(x = var_570_cast_fp16, y = var_571_to_fp16)[name = tensor<string, []>("op_572_cast_fp16")];
|
408 |
tensor<int32, [4]> var_573 = const()[name = tensor<string, []>("op_573"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
409 |
-
tensor<fp16, [1, 6, 64,
|
410 |
tensor<bool, []> mh_w_13_transpose_x_0 = const()[name = tensor<string, []>("mh_w_13_transpose_x_0"), val = tensor<bool, []>(true)];
|
411 |
tensor<bool, []> mh_w_13_transpose_y_0 = const()[name = tensor<string, []>("mh_w_13_transpose_y_0"), val = tensor<bool, []>(false)];
|
412 |
-
tensor<fp16, [1, 6, 1,
|
413 |
-
tensor<fp16, [1, 6, 1,
|
414 |
-
tensor<fp16, [1, 6, 1,
|
415 |
tensor<int32, [4]> var_583 = const()[name = tensor<string, []>("op_583"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
416 |
-
tensor<fp16, [1, 6, 64,
|
417 |
tensor<bool, []> attn_9_transpose_x_0 = const()[name = tensor<string, []>("attn_9_transpose_x_0"), val = tensor<bool, []>(false)];
|
418 |
tensor<bool, []> attn_9_transpose_y_0 = const()[name = tensor<string, []>("attn_9_transpose_y_0"), val = tensor<bool, []>(true)];
|
419 |
tensor<fp16, [1, 6, 64, 1]> attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_584_cast_fp16, y = var_582_cast_fp16)[name = tensor<string, []>("attn_9_cast_fp16")];
|
@@ -557,25 +557,25 @@ program(1.0)
|
|
557 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54969472)))];
|
558 |
tensor<fp16, [384]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55264448)))];
|
559 |
tensor<fp16, [1, 384, 1, 1]> current_value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = var_771, groups = var_721, pad = current_value_pad_0, pad_type = current_value_pad_type_0, strides = var_769, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor<string, []>("current_value_cast_fp16")];
|
560 |
-
tensor<fp16, [1, 384, 1,
|
561 |
-
tensor<fp16, [1, 384, 1,
|
562 |
-
tensor<fp16, [1, 384, 1,
|
563 |
-
tensor<fp16, [1, 384, 1,
|
564 |
-
tensor<fp16, [1, 384, 1,
|
565 |
-
tensor<fp16, [1, 384, 1,
|
566 |
tensor<int32, [4]> var_787 = const()[name = tensor<string, []>("op_787"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
567 |
tensor<fp16, [1, 6, 64, 1]> var_788_cast_fp16 = reshape(shape = var_787, x = query_13_cast_fp16)[name = tensor<string, []>("op_788_cast_fp16")];
|
568 |
tensor<fp16, []> var_789_to_fp16 = const()[name = tensor<string, []>("op_789_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
569 |
tensor<fp16, [1, 6, 64, 1]> var_790_cast_fp16 = mul(x = var_788_cast_fp16, y = var_789_to_fp16)[name = tensor<string, []>("op_790_cast_fp16")];
|
570 |
tensor<int32, [4]> var_791 = const()[name = tensor<string, []>("op_791"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
571 |
-
tensor<fp16, [1, 6, 64,
|
572 |
tensor<bool, []> mh_w_19_transpose_x_0 = const()[name = tensor<string, []>("mh_w_19_transpose_x_0"), val = tensor<bool, []>(true)];
|
573 |
tensor<bool, []> mh_w_19_transpose_y_0 = const()[name = tensor<string, []>("mh_w_19_transpose_y_0"), val = tensor<bool, []>(false)];
|
574 |
-
tensor<fp16, [1, 6, 1,
|
575 |
-
tensor<fp16, [1, 6, 1,
|
576 |
-
tensor<fp16, [1, 6, 1,
|
577 |
tensor<int32, [4]> var_801 = const()[name = tensor<string, []>("op_801"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
578 |
-
tensor<fp16, [1, 6, 64,
|
579 |
tensor<bool, []> attn_13_transpose_x_0 = const()[name = tensor<string, []>("attn_13_transpose_x_0"), val = tensor<bool, []>(false)];
|
580 |
tensor<bool, []> attn_13_transpose_y_0 = const()[name = tensor<string, []>("attn_13_transpose_y_0"), val = tensor<bool, []>(true)];
|
581 |
tensor<fp16, [1, 6, 64, 1]> attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_802_cast_fp16, y = var_800_cast_fp16)[name = tensor<string, []>("attn_13_cast_fp16")];
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.2.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
|
3 |
{
|
4 |
+
func main<ios16>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 448]> decoder_key_padding_mask, tensor<fp16, [1, 384, 1, 1500]> encoder_output_embeds, tensor<int32, [1]> input_ids, tensor<fp16, [1, 1536, 1, 448]> key_cache, tensor<fp16, [1, 448]> kv_cache_update_mask, tensor<fp16, [1, 1536, 1, 448]> value_cache) {
|
5 |
tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
|
6 |
tensor<int32, []> var_24_batch_dims_0 = const()[name = tensor<string, []>("op_24_batch_dims_0"), val = tensor<int32, []>(0)];
|
7 |
tensor<fp16, [51864, 384]> embed_tokens_weight_to_fp16 = const()[name = tensor<string, []>("embed_tokens_weight_to_fp16"), val = tensor<fp16, [51864, 384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
|
|
17 |
tensor<fp16, [1, 384, 1, 1]> inputs_1_cast_fp16 = expand_dims(axes = inputs_1_axes_0, x = var_42_cast_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
|
18 |
tensor<int32, [4]> tile_0 = const()[name = tensor<string, []>("tile_0"), val = tensor<int32, [4]>([384, 384, 384, 384])];
|
19 |
tensor<int32, []> var_47_axis_0 = const()[name = tensor<string, []>("op_47_axis_0"), val = tensor<int32, []>(1)];
|
20 |
+
tensor<fp16, [1, 384, 1, 448]> var_47_cast_fp16_0, tensor<fp16, [1, 384, 1, 448]> var_47_cast_fp16_1, tensor<fp16, [1, 384, 1, 448]> var_47_cast_fp16_2, tensor<fp16, [1, 384, 1, 448]> var_47_cast_fp16_3 = split(axis = var_47_axis_0, split_sizes = tile_0, x = key_cache)[name = tensor<string, []>("op_47_cast_fp16")];
|
21 |
tensor<int32, [4]> tile_1 = const()[name = tensor<string, []>("tile_1"), val = tensor<int32, [4]>([384, 384, 384, 384])];
|
22 |
tensor<int32, []> var_54_axis_0 = const()[name = tensor<string, []>("op_54_axis_0"), val = tensor<int32, []>(1)];
|
23 |
+
tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_0, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_1, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_2, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor<string, []>("op_54_cast_fp16")];
|
24 |
tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
|
25 |
tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
|
26 |
tensor<bool, []> var_72 = const()[name = tensor<string, []>("op_72"), val = tensor<bool, []>(true)];
|
|
|
62 |
tensor<fp16, [384]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41064896)))];
|
63 |
tensor<fp16, [1, 384, 1, 1]> current_value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = var_121, groups = var_71, pad = current_value_1_pad_0, pad_type = current_value_1_pad_type_0, strides = var_119, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("current_value_1_cast_fp16")];
|
64 |
tensor<int32, [1]> var_125_axes_0 = const()[name = tensor<string, []>("op_125_axes_0"), val = tensor<int32, [1]>([1])];
|
65 |
+
tensor<fp16, [1, 1, 448]> var_125_cast_fp16 = expand_dims(axes = var_125_axes_0, x = kv_cache_update_mask)[name = tensor<string, []>("op_125_cast_fp16")];
|
66 |
tensor<int32, [1]> var_126_axes_0 = const()[name = tensor<string, []>("op_126_axes_0"), val = tensor<int32, [1]>([2])];
|
67 |
+
tensor<fp16, [1, 1, 1, 448]> var_126_cast_fp16 = expand_dims(axes = var_126_axes_0, x = var_125_cast_fp16)[name = tensor<string, []>("op_126_cast_fp16")];
|
68 |
+
tensor<fp16, [1, 384, 1, 448]> var_128_cast_fp16 = mul(x = current_key_1_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_128_cast_fp16")];
|
69 |
tensor<fp16, []> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, []>(0x1p+0)];
|
70 |
+
tensor<fp16, [1, 1, 1, 448]> var_129_cast_fp16 = sub(x = var_65_to_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_129_cast_fp16")];
|
71 |
+
tensor<fp16, [1, 384, 1, 448]> var_130_cast_fp16 = mul(x = var_47_cast_fp16_0, y = var_129_cast_fp16)[name = tensor<string, []>("op_130_cast_fp16")];
|
72 |
+
tensor<fp16, [1, 384, 1, 448]> key_1_cast_fp16 = add(x = var_128_cast_fp16, y = var_130_cast_fp16)[name = tensor<string, []>("key_1_cast_fp16")];
|
73 |
+
tensor<fp16, [1, 384, 1, 448]> var_132_cast_fp16 = mul(x = current_value_1_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_132_cast_fp16")];
|
74 |
+
tensor<fp16, [1, 384, 1, 448]> var_134_cast_fp16 = mul(x = var_54_cast_fp16_0, y = var_129_cast_fp16)[name = tensor<string, []>("op_134_cast_fp16")];
|
75 |
+
tensor<fp16, [1, 384, 1, 448]> value_1_cast_fp16 = add(x = var_132_cast_fp16, y = var_134_cast_fp16)[name = tensor<string, []>("value_1_cast_fp16")];
|
76 |
tensor<int32, [4]> var_137 = const()[name = tensor<string, []>("op_137"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
77 |
tensor<fp16, [1, 6, 64, 1]> var_138_cast_fp16 = reshape(shape = var_137, x = query_1_cast_fp16)[name = tensor<string, []>("op_138_cast_fp16")];
|
78 |
tensor<fp16, []> var_139_to_fp16 = const()[name = tensor<string, []>("op_139_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
79 |
tensor<fp16, [1, 6, 64, 1]> var_140_cast_fp16 = mul(x = var_138_cast_fp16, y = var_139_to_fp16)[name = tensor<string, []>("op_140_cast_fp16")];
|
80 |
tensor<int32, [4]> var_141 = const()[name = tensor<string, []>("op_141"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
81 |
+
tensor<fp16, [1, 6, 64, 448]> var_142_cast_fp16 = reshape(shape = var_141, x = key_1_cast_fp16)[name = tensor<string, []>("op_142_cast_fp16")];
|
82 |
tensor<bool, []> mh_w_1_transpose_x_0 = const()[name = tensor<string, []>("mh_w_1_transpose_x_0"), val = tensor<bool, []>(true)];
|
83 |
tensor<bool, []> mh_w_1_transpose_y_0 = const()[name = tensor<string, []>("mh_w_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
84 |
+
tensor<fp16, [1, 6, 1, 448]> mh_w_1_cast_fp16 = matmul(transpose_x = mh_w_1_transpose_x_0, transpose_y = mh_w_1_transpose_y_0, x = var_140_cast_fp16, y = var_142_cast_fp16)[name = tensor<string, []>("mh_w_1_cast_fp16")];
|
85 |
tensor<int32, [1]> var_146_axes_0 = const()[name = tensor<string, []>("op_146_axes_0"), val = tensor<int32, [1]>([1])];
|
86 |
+
tensor<fp16, [1, 1, 448]> var_146_cast_fp16 = expand_dims(axes = var_146_axes_0, x = decoder_key_padding_mask)[name = tensor<string, []>("op_146_cast_fp16")];
|
87 |
tensor<int32, [1]> var_147_axes_0 = const()[name = tensor<string, []>("op_147_axes_0"), val = tensor<int32, [1]>([2])];
|
88 |
+
tensor<fp16, [1, 1, 1, 448]> var_147_cast_fp16 = expand_dims(axes = var_147_axes_0, x = var_146_cast_fp16)[name = tensor<string, []>("op_147_cast_fp16")];
|
89 |
+
tensor<fp16, [1, 6, 1, 448]> mh_w_3_cast_fp16 = add(x = mh_w_1_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_3_cast_fp16")];
|
90 |
+
tensor<fp16, [1, 6, 1, 448]> var_150_cast_fp16 = softmax(axis = var_64, x = mh_w_3_cast_fp16)[name = tensor<string, []>("op_150_cast_fp16")];
|
91 |
tensor<int32, [4]> var_151 = const()[name = tensor<string, []>("op_151"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
92 |
+
tensor<fp16, [1, 6, 64, 448]> var_152_cast_fp16 = reshape(shape = var_151, x = value_1_cast_fp16)[name = tensor<string, []>("op_152_cast_fp16")];
|
93 |
tensor<bool, []> attn_1_transpose_x_0 = const()[name = tensor<string, []>("attn_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
94 |
tensor<bool, []> attn_1_transpose_y_0 = const()[name = tensor<string, []>("attn_1_transpose_y_0"), val = tensor<bool, []>(true)];
|
95 |
tensor<fp16, [1, 6, 64, 1]> attn_1_cast_fp16 = matmul(transpose_x = attn_1_transpose_x_0, transpose_y = attn_1_transpose_y_0, x = var_152_cast_fp16, y = var_150_cast_fp16)[name = tensor<string, []>("attn_1_cast_fp16")];
|
|
|
233 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(45503104)))];
|
234 |
tensor<fp16, [384]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(45798080)))];
|
235 |
tensor<fp16, [1, 384, 1, 1]> current_value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = var_335, groups = var_285, pad = current_value_3_pad_0, pad_type = current_value_3_pad_type_0, strides = var_333, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor<string, []>("current_value_3_cast_fp16")];
|
236 |
+
tensor<fp16, [1, 384, 1, 448]> var_342_cast_fp16 = mul(x = current_key_3_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_342_cast_fp16")];
|
237 |
+
tensor<fp16, [1, 384, 1, 448]> var_344_cast_fp16 = mul(x = var_47_cast_fp16_1, y = var_129_cast_fp16)[name = tensor<string, []>("op_344_cast_fp16")];
|
238 |
+
tensor<fp16, [1, 384, 1, 448]> key_5_cast_fp16 = add(x = var_342_cast_fp16, y = var_344_cast_fp16)[name = tensor<string, []>("key_5_cast_fp16")];
|
239 |
+
tensor<fp16, [1, 384, 1, 448]> var_346_cast_fp16 = mul(x = current_value_3_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_346_cast_fp16")];
|
240 |
+
tensor<fp16, [1, 384, 1, 448]> var_348_cast_fp16 = mul(x = var_54_cast_fp16_1, y = var_129_cast_fp16)[name = tensor<string, []>("op_348_cast_fp16")];
|
241 |
+
tensor<fp16, [1, 384, 1, 448]> value_5_cast_fp16 = add(x = var_346_cast_fp16, y = var_348_cast_fp16)[name = tensor<string, []>("value_5_cast_fp16")];
|
242 |
tensor<int32, [4]> var_351 = const()[name = tensor<string, []>("op_351"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
243 |
tensor<fp16, [1, 6, 64, 1]> var_352_cast_fp16 = reshape(shape = var_351, x = query_5_cast_fp16)[name = tensor<string, []>("op_352_cast_fp16")];
|
244 |
tensor<fp16, []> var_353_to_fp16 = const()[name = tensor<string, []>("op_353_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
245 |
tensor<fp16, [1, 6, 64, 1]> var_354_cast_fp16 = mul(x = var_352_cast_fp16, y = var_353_to_fp16)[name = tensor<string, []>("op_354_cast_fp16")];
|
246 |
tensor<int32, [4]> var_355 = const()[name = tensor<string, []>("op_355"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
247 |
+
tensor<fp16, [1, 6, 64, 448]> var_356_cast_fp16 = reshape(shape = var_355, x = key_5_cast_fp16)[name = tensor<string, []>("op_356_cast_fp16")];
|
248 |
tensor<bool, []> mh_w_7_transpose_x_0 = const()[name = tensor<string, []>("mh_w_7_transpose_x_0"), val = tensor<bool, []>(true)];
|
249 |
tensor<bool, []> mh_w_7_transpose_y_0 = const()[name = tensor<string, []>("mh_w_7_transpose_y_0"), val = tensor<bool, []>(false)];
|
250 |
+
tensor<fp16, [1, 6, 1, 448]> mh_w_7_cast_fp16 = matmul(transpose_x = mh_w_7_transpose_x_0, transpose_y = mh_w_7_transpose_y_0, x = var_354_cast_fp16, y = var_356_cast_fp16)[name = tensor<string, []>("mh_w_7_cast_fp16")];
|
251 |
+
tensor<fp16, [1, 6, 1, 448]> mh_w_9_cast_fp16 = add(x = mh_w_7_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_9_cast_fp16")];
|
252 |
+
tensor<fp16, [1, 6, 1, 448]> var_364_cast_fp16 = softmax(axis = var_278, x = mh_w_9_cast_fp16)[name = tensor<string, []>("op_364_cast_fp16")];
|
253 |
tensor<int32, [4]> var_365 = const()[name = tensor<string, []>("op_365"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
254 |
+
tensor<fp16, [1, 6, 64, 448]> var_366_cast_fp16 = reshape(shape = var_365, x = value_5_cast_fp16)[name = tensor<string, []>("op_366_cast_fp16")];
|
255 |
tensor<bool, []> attn_5_transpose_x_0 = const()[name = tensor<string, []>("attn_5_transpose_x_0"), val = tensor<bool, []>(false)];
|
256 |
tensor<bool, []> attn_5_transpose_y_0 = const()[name = tensor<string, []>("attn_5_transpose_y_0"), val = tensor<bool, []>(true)];
|
257 |
tensor<fp16, [1, 6, 64, 1]> attn_5_cast_fp16 = matmul(transpose_x = attn_5_transpose_x_0, transpose_y = attn_5_transpose_y_0, x = var_366_cast_fp16, y = var_364_cast_fp16)[name = tensor<string, []>("attn_5_cast_fp16")];
|
|
|
395 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50236288)))];
|
396 |
tensor<fp16, [384]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50531264)))];
|
397 |
tensor<fp16, [1, 384, 1, 1]> current_value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = var_553, groups = var_503, pad = current_value_5_pad_0, pad_type = current_value_5_pad_type_0, strides = var_551, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor<string, []>("current_value_5_cast_fp16")];
|
398 |
+
tensor<fp16, [1, 384, 1, 448]> var_560_cast_fp16 = mul(x = current_key_5_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_560_cast_fp16")];
|
399 |
+
tensor<fp16, [1, 384, 1, 448]> var_562_cast_fp16 = mul(x = var_47_cast_fp16_2, y = var_129_cast_fp16)[name = tensor<string, []>("op_562_cast_fp16")];
|
400 |
+
tensor<fp16, [1, 384, 1, 448]> key_9_cast_fp16 = add(x = var_560_cast_fp16, y = var_562_cast_fp16)[name = tensor<string, []>("key_9_cast_fp16")];
|
401 |
+
tensor<fp16, [1, 384, 1, 448]> var_564_cast_fp16 = mul(x = current_value_5_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_564_cast_fp16")];
|
402 |
+
tensor<fp16, [1, 384, 1, 448]> var_566_cast_fp16 = mul(x = var_54_cast_fp16_2, y = var_129_cast_fp16)[name = tensor<string, []>("op_566_cast_fp16")];
|
403 |
+
tensor<fp16, [1, 384, 1, 448]> value_9_cast_fp16 = add(x = var_564_cast_fp16, y = var_566_cast_fp16)[name = tensor<string, []>("value_9_cast_fp16")];
|
404 |
tensor<int32, [4]> var_569 = const()[name = tensor<string, []>("op_569"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
405 |
tensor<fp16, [1, 6, 64, 1]> var_570_cast_fp16 = reshape(shape = var_569, x = query_9_cast_fp16)[name = tensor<string, []>("op_570_cast_fp16")];
|
406 |
tensor<fp16, []> var_571_to_fp16 = const()[name = tensor<string, []>("op_571_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
407 |
tensor<fp16, [1, 6, 64, 1]> var_572_cast_fp16 = mul(x = var_570_cast_fp16, y = var_571_to_fp16)[name = tensor<string, []>("op_572_cast_fp16")];
|
408 |
tensor<int32, [4]> var_573 = const()[name = tensor<string, []>("op_573"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
409 |
+
tensor<fp16, [1, 6, 64, 448]> var_574_cast_fp16 = reshape(shape = var_573, x = key_9_cast_fp16)[name = tensor<string, []>("op_574_cast_fp16")];
|
410 |
tensor<bool, []> mh_w_13_transpose_x_0 = const()[name = tensor<string, []>("mh_w_13_transpose_x_0"), val = tensor<bool, []>(true)];
|
411 |
tensor<bool, []> mh_w_13_transpose_y_0 = const()[name = tensor<string, []>("mh_w_13_transpose_y_0"), val = tensor<bool, []>(false)];
|
412 |
+
tensor<fp16, [1, 6, 1, 448]> mh_w_13_cast_fp16 = matmul(transpose_x = mh_w_13_transpose_x_0, transpose_y = mh_w_13_transpose_y_0, x = var_572_cast_fp16, y = var_574_cast_fp16)[name = tensor<string, []>("mh_w_13_cast_fp16")];
|
413 |
+
tensor<fp16, [1, 6, 1, 448]> mh_w_15_cast_fp16 = add(x = mh_w_13_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_15_cast_fp16")];
|
414 |
+
tensor<fp16, [1, 6, 1, 448]> var_582_cast_fp16 = softmax(axis = var_496, x = mh_w_15_cast_fp16)[name = tensor<string, []>("op_582_cast_fp16")];
|
415 |
tensor<int32, [4]> var_583 = const()[name = tensor<string, []>("op_583"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
416 |
+
tensor<fp16, [1, 6, 64, 448]> var_584_cast_fp16 = reshape(shape = var_583, x = value_9_cast_fp16)[name = tensor<string, []>("op_584_cast_fp16")];
|
417 |
tensor<bool, []> attn_9_transpose_x_0 = const()[name = tensor<string, []>("attn_9_transpose_x_0"), val = tensor<bool, []>(false)];
|
418 |
tensor<bool, []> attn_9_transpose_y_0 = const()[name = tensor<string, []>("attn_9_transpose_y_0"), val = tensor<bool, []>(true)];
|
419 |
tensor<fp16, [1, 6, 64, 1]> attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_584_cast_fp16, y = var_582_cast_fp16)[name = tensor<string, []>("attn_9_cast_fp16")];
|
|
|
557 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54969472)))];
|
558 |
tensor<fp16, [384]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55264448)))];
|
559 |
tensor<fp16, [1, 384, 1, 1]> current_value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = var_771, groups = var_721, pad = current_value_pad_0, pad_type = current_value_pad_type_0, strides = var_769, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor<string, []>("current_value_cast_fp16")];
|
560 |
+
tensor<fp16, [1, 384, 1, 448]> var_778_cast_fp16 = mul(x = current_key_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_778_cast_fp16")];
|
561 |
+
tensor<fp16, [1, 384, 1, 448]> var_780_cast_fp16 = mul(x = var_47_cast_fp16_3, y = var_129_cast_fp16)[name = tensor<string, []>("op_780_cast_fp16")];
|
562 |
+
tensor<fp16, [1, 384, 1, 448]> key_13_cast_fp16 = add(x = var_778_cast_fp16, y = var_780_cast_fp16)[name = tensor<string, []>("key_13_cast_fp16")];
|
563 |
+
tensor<fp16, [1, 384, 1, 448]> var_782_cast_fp16 = mul(x = current_value_cast_fp16, y = var_126_cast_fp16)[name = tensor<string, []>("op_782_cast_fp16")];
|
564 |
+
tensor<fp16, [1, 384, 1, 448]> var_784_cast_fp16 = mul(x = var_54_cast_fp16_3, y = var_129_cast_fp16)[name = tensor<string, []>("op_784_cast_fp16")];
|
565 |
+
tensor<fp16, [1, 384, 1, 448]> value_13_cast_fp16 = add(x = var_782_cast_fp16, y = var_784_cast_fp16)[name = tensor<string, []>("value_13_cast_fp16")];
|
566 |
tensor<int32, [4]> var_787 = const()[name = tensor<string, []>("op_787"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
567 |
tensor<fp16, [1, 6, 64, 1]> var_788_cast_fp16 = reshape(shape = var_787, x = query_13_cast_fp16)[name = tensor<string, []>("op_788_cast_fp16")];
|
568 |
tensor<fp16, []> var_789_to_fp16 = const()[name = tensor<string, []>("op_789_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
|
569 |
tensor<fp16, [1, 6, 64, 1]> var_790_cast_fp16 = mul(x = var_788_cast_fp16, y = var_789_to_fp16)[name = tensor<string, []>("op_790_cast_fp16")];
|
570 |
tensor<int32, [4]> var_791 = const()[name = tensor<string, []>("op_791"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
571 |
+
tensor<fp16, [1, 6, 64, 448]> var_792_cast_fp16 = reshape(shape = var_791, x = key_13_cast_fp16)[name = tensor<string, []>("op_792_cast_fp16")];
|
572 |
tensor<bool, []> mh_w_19_transpose_x_0 = const()[name = tensor<string, []>("mh_w_19_transpose_x_0"), val = tensor<bool, []>(true)];
|
573 |
tensor<bool, []> mh_w_19_transpose_y_0 = const()[name = tensor<string, []>("mh_w_19_transpose_y_0"), val = tensor<bool, []>(false)];
|
574 |
+
tensor<fp16, [1, 6, 1, 448]> mh_w_19_cast_fp16 = matmul(transpose_x = mh_w_19_transpose_x_0, transpose_y = mh_w_19_transpose_y_0, x = var_790_cast_fp16, y = var_792_cast_fp16)[name = tensor<string, []>("mh_w_19_cast_fp16")];
|
575 |
+
tensor<fp16, [1, 6, 1, 448]> mh_w_21_cast_fp16 = add(x = mh_w_19_cast_fp16, y = var_147_cast_fp16)[name = tensor<string, []>("mh_w_21_cast_fp16")];
|
576 |
+
tensor<fp16, [1, 6, 1, 448]> var_800_cast_fp16 = softmax(axis = var_714, x = mh_w_21_cast_fp16)[name = tensor<string, []>("op_800_cast_fp16")];
|
577 |
tensor<int32, [4]> var_801 = const()[name = tensor<string, []>("op_801"), val = tensor<int32, [4]>([1, 6, 64, -1])];
|
578 |
+
tensor<fp16, [1, 6, 64, 448]> var_802_cast_fp16 = reshape(shape = var_801, x = value_13_cast_fp16)[name = tensor<string, []>("op_802_cast_fp16")];
|
579 |
tensor<bool, []> attn_13_transpose_x_0 = const()[name = tensor<string, []>("attn_13_transpose_x_0"), val = tensor<bool, []>(false)];
|
580 |
tensor<bool, []> attn_13_transpose_y_0 = const()[name = tensor<string, []>("attn_13_transpose_y_0"), val = tensor<bool, []>(true)];
|
581 |
tensor<fp16, [1, 6, 64, 1]> attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_802_cast_fp16, y = var_800_cast_fp16)[name = tensor<string, []>("attn_13_cast_fp16")];
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 59215664
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfa7846e3e01f1933609d0003d9d102a53b0d674b3a4a9a37d3aafba4de790fc
|
3 |
size 59215664
|