--- license: apache-2.0 tags: - generated_from_trainer datasets: - autextification2023 metrics: - accuracy - f1 - precision - recall model-index: - name: ia-detection-bart-base results: - task: name: Text Classification type: text-classification dataset: name: autextification2023 type: autextification2023 config: detection_en split: train args: detection_en metrics: - name: Accuracy type: accuracy value: 0.7699248809087578 - name: F1 type: f1 value: 0.7727252160535721 - name: Precision type: precision value: 0.7826047108422692 - name: Recall type: recall value: 0.7630920464700626 --- # ia-detection-bart-base This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the autextification2023 dataset. It achieves the following results on the evaluation set: - Loss: 0.6968 - Accuracy: 0.7699 - F1: 0.7727 - Precision: 0.7826 - Recall: 0.7631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5243 | 1.0 | 3808 | 0.4726 | 0.7861 | 0.7309 | 0.9685 | 0.5869 | | 0.627 | 2.0 | 7616 | 0.6362 | 0.6151 | 0.7120 | 0.5653 | 0.9618 | | 0.6919 | 3.0 | 11424 | 0.7017 | 0.5052 | 0.0 | 0.0 | 0.0 | | 0.7018 | 4.0 | 15232 | 0.6932 | 0.5052 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.13.3