File size: 2,463 Bytes
615e4fa d976163 615e4fa 0a6616b 615e4fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
language:
- ml
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Malayalam - Arjun Shaji
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ml
split: None
args: 'config: ml, split: test'
metrics:
- name: Wer
type: wer
value: 85.28735632183908
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Malayalam - Arjun Shaji
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6067
- Wer: 85.2874
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.1903 | 3.7037 | 100 | 1.1262 | 100.0 |
| 0.473 | 7.4074 | 200 | 0.5343 | 100.9195 |
| 0.1263 | 11.1111 | 300 | 0.4247 | 91.7241 |
| 0.0335 | 14.8148 | 400 | 0.5135 | 91.7241 |
| 0.0262 | 18.5185 | 500 | 0.5317 | 91.7241 |
| 0.0135 | 22.2222 | 600 | 0.5361 | 86.2069 |
| 0.0067 | 25.9259 | 700 | 0.5448 | 84.5977 |
| 0.0016 | 29.6296 | 800 | 0.6192 | 88.0460 |
| 0.0003 | 33.3333 | 900 | 0.5992 | 84.8276 |
| 0.0002 | 37.0370 | 1000 | 0.6067 | 85.2874 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.1.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|