File size: 2,463 Bytes
615e4fa
 
 
 
 
 
 
 
 
 
 
 
d976163
615e4fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a6616b
615e4fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
language:
- ml
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Malayalam - Arjun Shaji
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: ml
      split: None
      args: 'config: ml, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 85.28735632183908
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Malayalam - Arjun Shaji

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6067
- Wer: 85.2874

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer      |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.1903        | 3.7037  | 100  | 1.1262          | 100.0    |
| 0.473         | 7.4074  | 200  | 0.5343          | 100.9195 |
| 0.1263        | 11.1111 | 300  | 0.4247          | 91.7241  |
| 0.0335        | 14.8148 | 400  | 0.5135          | 91.7241  |
| 0.0262        | 18.5185 | 500  | 0.5317          | 91.7241  |
| 0.0135        | 22.2222 | 600  | 0.5361          | 86.2069  |
| 0.0067        | 25.9259 | 700  | 0.5448          | 84.5977  |
| 0.0016        | 29.6296 | 800  | 0.6192          | 88.0460  |
| 0.0003        | 33.3333 | 900  | 0.5992          | 84.8276  |
| 0.0002        | 37.0370 | 1000 | 0.6067          | 85.2874  |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.1.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1