--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6459 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0912 | 1.0 | 113 | 1.9840 | 0.33 | | 1.7391 | 2.0 | 226 | 1.6205 | 0.57 | | 1.3242 | 3.0 | 339 | 1.3338 | 0.61 | | 1.1953 | 4.0 | 452 | 1.1904 | 0.68 | | 0.8983 | 5.0 | 565 | 1.0357 | 0.75 | | 0.8686 | 6.0 | 678 | 0.9569 | 0.78 | | 0.84 | 7.0 | 791 | 0.7681 | 0.8 | | 0.5776 | 8.0 | 904 | 0.6968 | 0.84 | | 0.5186 | 9.0 | 1017 | 0.6541 | 0.86 | | 0.3765 | 10.0 | 1130 | 0.6743 | 0.85 | | 0.3671 | 11.0 | 1243 | 0.6459 | 0.85 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3