artefucktor commited on
Commit
9de9087
1 Parent(s): 0cc74c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -4,15 +4,22 @@ tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
 
 
 
 
 
7
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
  <!--- Describe your model here -->
15
 
 
 
16
  ## Usage (Sentence-Transformers)
17
 
18
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
@@ -25,22 +32,15 @@ Then you can use the model like this:
25
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
- embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
34
 
35
 
36
 
37
- ## Evaluation Results
38
-
39
- <!--- Describe how your model was evaluated -->
40
-
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
-
43
-
44
  ## Training
45
  The model was trained with the parameters:
46
 
 
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
+ language:
8
+ - ru
9
+ - en
10
+ base_model: sentence-transformers/LaBSE
11
+ inference: false
12
 
13
  ---
14
 
15
+ # LaBSE_geonames_RU_RELOCATION
16
 
17
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
18
 
19
  <!--- Describe your model here -->
20
 
21
+ This model fine tuned on geonames cities15000 in RU and popular relocation countries.
22
+
23
  ## Usage (Sentence-Transformers)
24
 
25
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
32
 
33
  ```python
34
  from sentence_transformers import SentenceTransformer
35
+ cities = ["Vladivostok", "Moscow"]
36
 
37
+ model = SentenceTransformer('artefucktor/LaBSE_geonames_RU_RELOCATION')
38
+ embeddings = model.encode(cities)
39
  print(embeddings)
40
  ```
41
 
42
 
43
 
 
 
 
 
 
 
 
44
  ## Training
45
  The model was trained with the parameters:
46