File size: 1,514 Bytes
447768c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from transformers import AutoModelForCausalLM, AutoTokenizer
class FileHandler:
def __init__(self, model_path):
self.model_path = model_path
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.model.eval()
def generate_text(self, prompt, max_length=100, num_return_sequences=1, temperature=0.7):
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")
generated_ids = self.model.generate(
input_ids,
max_length=max_length,
num_return_sequences=num_return_sequences,
temperature=temperature,
pad_token_id=self.tokenizer.eos_token_id,
)
generated_texts = [self.tokenizer.decode(ids, skip_special_tokens=True) for ids in generated_ids]
return generated_texts
def __call__(self, request):
# Parse the request and extract the necessary information
prompt = request["prompt"]
max_length = request.get("max_length", 100)
num_return_sequences = request.get("num_return_sequences", 1)
temperature = request.get("temperature", 0.7)
# Generate text based on the prompt and parameters
generated_texts = self.generate_text(prompt, max_length, num_return_sequences, temperature)
# Prepare the response
response = {
"generated_texts": generated_texts
}
return response
handler = FileHandler(".") |