arubenruben commited on
Commit
3a393c3
1 Parent(s): 59a0d5a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -1
README.md CHANGED
@@ -8,4 +8,58 @@ language:
8
  metrics:
9
  - f1
10
  pipeline_tag: token-classification
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  metrics:
9
  - f1
10
  pipeline_tag: token-classification
11
+ ---
12
+
13
+
14
+ # Portuguese NER BERT-CRF HAREM Default
15
+
16
+ This model is a fine-tuned BERT model adapted for Named Entity Recognition (NER) tasks. It utilizes Conditional Random Fields (CRF) as the decoder.
17
+
18
+ The model follows the HAREM Default labeling scheme for NER. Additionally, it provides options for HAREM Selective and Conll-2003 labeling schemes.
19
+
20
+ ## How to Use
21
+
22
+ You can employ this model using the Transformers library's *pipeline* for NER, or incorporate it as a conventional Transformer in the HuggingFace ecosystem.
23
+
24
+ ```python
25
+ from transformers import pipeline
26
+ import torch
27
+ import nltk
28
+
29
+ ner_classifier = pipeline(
30
+ "ner",
31
+ model="arubenruben/NER-PT-BERT-CRF-HAREM-Default",
32
+ device=torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu"),
33
+ trust_remote_code=True
34
+ )
35
+
36
+ text = "FCPorto vence o Benfica por 5-0 no Estádio do Dragão"
37
+ tokens = nltk.wordpunct_tokenize(text)
38
+ result = ner_classifier(tokens)
39
+ ```
40
+
41
+ ## Demo
42
+
43
+ There is a [Notebook](https://github.com/arubenruben/PT-Pump-Up/blob/master/BERT-CRF.ipynb) available to test our code.
44
+
45
+ ## PT-Pump-Up
46
+
47
+ This model is integrated in the project [PT-Pump-Up](https://github.com/arubenruben/PT-Pump-Up)
48
+
49
+
50
+ ## Evaluation
51
+
52
+ #### Testing Data
53
+
54
+ The model was tested on the Miniharem Testset.
55
+
56
+ ### Results
57
+
58
+ F1-Score: 0.787
59
+
60
+ ## Citation
61
+
62
+ Citation will be made available soon.
63
+
64
+ **BibTeX:**
65
+ :(