arubenruben
commited on
Commit
•
66ca236
1
Parent(s):
dc7dbbc
Update deploy_pipeline.py
Browse files- deploy_pipeline.py +4 -62
deploy_pipeline.py
CHANGED
@@ -1,14 +1,3 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import Pipeline
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
from transformers.pipelines import PIPELINE_REGISTRY
|
5 |
-
from transformers import pipeline
|
6 |
-
from transformers import AutoModelForTokenClassification
|
7 |
-
from huggingface_hub import Repository
|
8 |
-
import sys
|
9 |
-
import os
|
10 |
-
|
11 |
-
|
12 |
class TokenizeAndAlignLabelsStep():
|
13 |
|
14 |
# Adapted From : https://huggingface.co/docs/transformers/tasks/token_classification
|
@@ -21,7 +10,7 @@ class TokenizeAndAlignLabelsStep():
|
|
21 |
|
22 |
previous_word_idx = None
|
23 |
|
24 |
-
|
25 |
labels_mask = []
|
26 |
|
27 |
for word_idx in word_ids: # Set the special tokens to -100.
|
@@ -29,64 +18,17 @@ class TokenizeAndAlignLabelsStep():
|
|
29 |
labels_mask.append(False)
|
30 |
# Only label the first token of a given word.
|
31 |
elif word_idx != previous_word_idx:
|
32 |
-
labels_mask.append(True)
|
|
|
33 |
else:
|
34 |
labels_mask.append(False)
|
35 |
|
36 |
previous_word_idx = word_idx
|
37 |
|
38 |
-
tokenized_inputs["tokens"] =
|
39 |
tokenized_inputs["labels_mask"] = labels_mask
|
40 |
|
41 |
return tokenized_inputs
|
42 |
-
|
43 |
-
|
44 |
-
class BERT_CRF_Pipeline(Pipeline):
|
45 |
-
|
46 |
-
def _sanitize_parameters(self, **kwargs):
|
47 |
-
return {}, {}, {}
|
48 |
-
|
49 |
-
def preprocess(self, text):
|
50 |
-
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
52 |
-
"neuralmind/bert-base-portuguese-cased", do_lower_case=False)
|
53 |
-
|
54 |
-
TokenizeAndAlignLabelsStep().tokenize_and_align_labels(
|
55 |
-
examples=text, tokenizer=tokenizer)
|
56 |
-
|
57 |
-
return TokenizeAndAlignLabelsStep().tokenize_and_align_labels(examples=text, tokenizer=tokenizer)
|
58 |
-
|
59 |
-
def _forward(self, tokenizer_results):
|
60 |
-
|
61 |
-
input_ids = torch.tensor(
|
62 |
-
tokenizer_results['input_ids'], dtype=torch.long, device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")).unsqueeze(0)
|
63 |
-
|
64 |
-
token_type_ids = torch.tensor(
|
65 |
-
tokenizer_results['token_type_ids'], dtype=torch.long, device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")).unsqueeze(0)
|
66 |
-
|
67 |
-
attention_mask = torch.tensor(
|
68 |
-
tokenizer_results['attention_mask'], dtype=torch.bool, device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")).unsqueeze(0)
|
69 |
-
|
70 |
-
labels_mask = torch.tensor(
|
71 |
-
tokenizer_results['labels_mask'], dtype=torch.bool, device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")).unsqueeze(0)
|
72 |
-
|
73 |
-
# input_ids, token_type_ids, attention_mask, labels, labels_mask
|
74 |
-
outputs = self.model(input_ids=input_ids, token_type_ids=token_type_ids,
|
75 |
-
attention_mask=attention_mask, labels=None, labels_mask=labels_mask)
|
76 |
-
|
77 |
-
return {'outputs': outputs, 'tokens': tokenizer_results['tokens']}
|
78 |
-
|
79 |
-
def postprocess(self, outputs):
|
80 |
-
|
81 |
-
model_outputs = outputs['outputs']
|
82 |
-
tokens = outputs['tokens']
|
83 |
-
|
84 |
-
# From Ner_tags to Ner_labels
|
85 |
-
for i, label in enumerate(model_outputs[0]):
|
86 |
-
model_outputs[0][i] = self.model.config.id2label[label]
|
87 |
-
|
88 |
-
return model_outputs[0], tokens
|
89 |
-
|
90 |
def main():
|
91 |
|
92 |
PIPELINE_REGISTRY.register_pipeline("PT-BERT-Large-CRF-HAREM-Default-pipeline",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class TokenizeAndAlignLabelsStep():
|
2 |
|
3 |
# Adapted From : https://huggingface.co/docs/transformers/tasks/token_classification
|
|
|
10 |
|
11 |
previous_word_idx = None
|
12 |
|
13 |
+
tokens= []
|
14 |
labels_mask = []
|
15 |
|
16 |
for word_idx in word_ids: # Set the special tokens to -100.
|
|
|
18 |
labels_mask.append(False)
|
19 |
# Only label the first token of a given word.
|
20 |
elif word_idx != previous_word_idx:
|
21 |
+
labels_mask.append(True)
|
22 |
+
tokens.append(tokenized_inputs["input_ids"][word_idx])
|
23 |
else:
|
24 |
labels_mask.append(False)
|
25 |
|
26 |
previous_word_idx = word_idx
|
27 |
|
28 |
+
tokenized_inputs["tokens"] = tokens
|
29 |
tokenized_inputs["labels_mask"] = labels_mask
|
30 |
|
31 |
return tokenized_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def main():
|
33 |
|
34 |
PIPELINE_REGISTRY.register_pipeline("PT-BERT-Large-CRF-HAREM-Default-pipeline",
|