arubenruben
commited on
Commit
•
7120e17
1
Parent(s):
bacde3a
commit files to HF hub
Browse files- config.json +12 -3
- deploy_pipeline.py +103 -0
config.json
CHANGED
@@ -1,13 +1,22 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"architectures": [
|
4 |
"BERT_CRF"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
-
"AutoConfig": "model.BERT_CRF_Config",
|
8 |
-
"AutoModelForTokenClassification": "model.BERT_CRF"
|
9 |
},
|
10 |
"bert_name": "neuralmind/bert-large-portuguese-cased",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"id2label": {
|
12 |
"0": "O",
|
13 |
"1": "B-PESSOA",
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "arubenruben/PT-BERT-Large-CRF-HAREM-Selective",
|
3 |
"architectures": [
|
4 |
"BERT_CRF"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
+
"AutoConfig": "arubenruben/PT-BERT-Large-CRF-HAREM-Selective--model.BERT_CRF_Config",
|
8 |
+
"AutoModelForTokenClassification": "arubenruben/PT-BERT-Large-CRF-HAREM-Selective--model.BERT_CRF"
|
9 |
},
|
10 |
"bert_name": "neuralmind/bert-large-portuguese-cased",
|
11 |
+
"custom_pipelines": {
|
12 |
+
"arubenruben/PT-BERT-Large-CRF-HAREM-Selective-pipeline": {
|
13 |
+
"impl": "deploy_pipeline.BERT_CRF_Pipeline",
|
14 |
+
"pt": [
|
15 |
+
"AutoModelForTokenClassification"
|
16 |
+
],
|
17 |
+
"tf": []
|
18 |
+
}
|
19 |
+
},
|
20 |
"id2label": {
|
21 |
"0": "O",
|
22 |
"1": "B-PESSOA",
|
deploy_pipeline.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Pipeline
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from transformers.pipelines import PIPELINE_REGISTRY
|
5 |
+
from transformers import pipeline
|
6 |
+
from transformers import AutoModelForTokenClassification
|
7 |
+
from huggingface_hub import Repository
|
8 |
+
import sys
|
9 |
+
import os
|
10 |
+
|
11 |
+
|
12 |
+
class TokenizeAndAlignLabelsStep():
|
13 |
+
|
14 |
+
# Adapted From : https://huggingface.co/docs/transformers/tasks/token_classification
|
15 |
+
def tokenize_and_align_labels(self, examples, tokenizer):
|
16 |
+
|
17 |
+
tokenized_inputs = tokenizer(examples, padding='max_length', max_length=512)
|
18 |
+
|
19 |
+
# Map tokens to their respective word.
|
20 |
+
word_ids = tokenized_inputs.word_ids()
|
21 |
+
|
22 |
+
previous_word_idx = None
|
23 |
+
|
24 |
+
labels_mask = []
|
25 |
+
|
26 |
+
for word_idx in word_ids: # Set the special tokens to -100.
|
27 |
+
if word_idx is None:
|
28 |
+
labels_mask.append(False)
|
29 |
+
# Only label the first token of a given word.
|
30 |
+
elif word_idx != previous_word_idx:
|
31 |
+
labels_mask.append(True)
|
32 |
+
else:
|
33 |
+
labels_mask.append(False)
|
34 |
+
|
35 |
+
previous_word_idx = word_idx
|
36 |
+
|
37 |
+
tokenized_inputs["tokens"] = examples
|
38 |
+
tokenized_inputs["ner_tags"] = []
|
39 |
+
tokenized_inputs["labels"] = []
|
40 |
+
tokenized_inputs["labels_mask"] = labels_mask
|
41 |
+
|
42 |
+
return tokenized_inputs
|
43 |
+
|
44 |
+
|
45 |
+
class BERT_CRF_Pipeline(Pipeline):
|
46 |
+
|
47 |
+
def _sanitize_parameters(self, **kwargs):
|
48 |
+
return {}, {}, {}
|
49 |
+
|
50 |
+
def preprocess(self, text):
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
53 |
+
"neuralmind/bert-base-portuguese-cased", do_lower_case=False)
|
54 |
+
|
55 |
+
TokenizeAndAlignLabelsStep().tokenize_and_align_labels(
|
56 |
+
examples=text, tokenizer=tokenizer)
|
57 |
+
|
58 |
+
return TokenizeAndAlignLabelsStep().tokenize_and_align_labels(examples=text, tokenizer=tokenizer)
|
59 |
+
|
60 |
+
def _forward(self, tokenizer_results):
|
61 |
+
|
62 |
+
input_ids = torch.tensor(
|
63 |
+
tokenizer_results['input_ids'], dtype=torch.long).unsqueeze(0)
|
64 |
+
|
65 |
+
token_type_ids = torch.tensor(
|
66 |
+
tokenizer_results['token_type_ids'], dtype=torch.long).unsqueeze(0)
|
67 |
+
|
68 |
+
attention_mask = torch.tensor(
|
69 |
+
tokenizer_results['attention_mask'], dtype=torch.bool).unsqueeze(0)
|
70 |
+
|
71 |
+
labels_mask = torch.tensor(
|
72 |
+
tokenizer_results['labels_mask'], dtype=torch.bool).unsqueeze(0)
|
73 |
+
|
74 |
+
# input_ids, token_type_ids, attention_mask, labels, labels_mask
|
75 |
+
outputs = self.model(input_ids=input_ids, token_type_ids=token_type_ids,
|
76 |
+
attention_mask=attention_mask, labels=None, labels_mask=labels_mask)
|
77 |
+
|
78 |
+
return outputs
|
79 |
+
|
80 |
+
def postprocess(self, model_outputs):
|
81 |
+
# From Ner_tags to Ner_labels
|
82 |
+
for i, label in enumerate(model_outputs[0]):
|
83 |
+
model_outputs[0][i] = self.model.config.id2label[label]
|
84 |
+
|
85 |
+
return model_outputs[0]
|
86 |
+
|
87 |
+
|
88 |
+
def main():
|
89 |
+
|
90 |
+
PIPELINE_REGISTRY.register_pipeline("arubenruben/PT-BERT-Large-CRF-HAREM-Selective-pipeline",
|
91 |
+
pipeline_class=BERT_CRF_Pipeline,
|
92 |
+
pt_model=AutoModelForTokenClassification,
|
93 |
+
)
|
94 |
+
classifier = pipeline("arubenruben/PT-BERT-Large-CRF-HAREM-Selective-pipeline", model="arubenruben/PT-BERT-Large-CRF-HAREM-Selective",
|
95 |
+
device='cuda' if torch.cuda.is_available() else 'cpu', trust_remote_code=True)
|
96 |
+
out_path = os.path.join(sys.path[0], 'out', 'pipeline')
|
97 |
+
repo = Repository(
|
98 |
+
out_path, clone_from=f"arubenruben/PT-BERT-Large-CRF-HAREM-Selective", use_auth_token=True)
|
99 |
+
|
100 |
+
# repo.git_pull()
|
101 |
+
|
102 |
+
classifier.save_pretrained(out_path)
|
103 |
+
repo.push_to_hub()
|