--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: email_answer_extraction results: [] --- # email_answer_extraction This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0388 - Precision: 0.3571 - Recall: 0.5769 - F1: 0.4412 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4874 | 1.0 | 32 | 0.0956 | 0.0339 | 0.0769 | 0.0471 | 0.9714 | | 0.1951 | 2.0 | 64 | 0.0448 | 0.2115 | 0.4231 | 0.2821 | 0.9829 | | 0.1086 | 3.0 | 96 | 0.0384 | 0.3556 | 0.6154 | 0.4507 | 0.9857 | | 0.0552 | 4.0 | 128 | 0.0388 | 0.3571 | 0.5769 | 0.4412 | 0.9859 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.16.0 - Tokenizers 0.15.0