--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: email_question_extraction results: [] --- # email_question_extraction This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.3143 - Recall: 0.7097 - F1: 0.4356 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1978 | 1.0 | 91 | nan | 0.2462 | 0.5161 | 0.3333 | 0.9763 | | 0.1749 | 2.0 | 182 | nan | 0.3182 | 0.6774 | 0.4330 | 0.9681 | | 0.0351 | 3.0 | 273 | nan | 0.2647 | 0.5806 | 0.3636 | 0.9779 | | 0.0434 | 4.0 | 364 | nan | 0.3143 | 0.7097 | 0.4356 | 0.9700 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.16.0 - Tokenizers 0.15.0