File size: 1,830 Bytes
009c7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
metrics:
- accuracy
- wer
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-keyword_spotting2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast-finetuned-audioset-10-10-0.4593-keyword_spotting2
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0123
- Accuracy: 0.8228
- Wer: 0.1772
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.0008 | 1.0 | 28 | 1.3229 | 0.8228 | 0.1772 |
| 0.3356 | 2.0 | 56 | 1.3607 | 0.8228 | 0.1772 |
| 0.0035 | 3.0 | 84 | 1.0123 | 0.8228 | 0.1772 |
| 0.0051 | 4.0 | 112 | 1.5980 | 0.8228 | 0.1772 |
| 0.0001 | 5.0 | 140 | 1.4630 | 0.8228 | 0.1772 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.7.dev0
- Tokenizers 0.14.1
|