--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy - wer model-index: - name: ast-finetuned-audioset-10-10-0.4593-keyword_spotting2 results: [] --- # ast-finetuned-audioset-10-10-0.4593-keyword_spotting2 This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0123 - Accuracy: 0.8228 - Wer: 0.1772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0008 | 1.0 | 28 | 1.3229 | 0.8228 | 0.1772 | | 0.3356 | 2.0 | 56 | 1.3607 | 0.8228 | 0.1772 | | 0.0035 | 3.0 | 84 | 1.0123 | 0.8228 | 0.1772 | | 0.0051 | 4.0 | 112 | 1.5980 | 0.8228 | 0.1772 | | 0.0001 | 5.0 | 140 | 1.4630 | 0.8228 | 0.1772 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.7.dev0 - Tokenizers 0.14.1