File size: 1,843 Bytes
7c4a620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331f56f
7c4a620
 
 
 
 
 
 
 
 
331f56f
 
 
7c4a620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331f56f
6226781
 
7c4a620
6226781
 
7c4a620
 
 
 
 
 
 
331f56f
 
 
7c4a620
 
 
 
51237ef
 
331f56f
51237ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: PolyAI/minds14
      type: PolyAI/minds14
      config: en-US
      split: train
      args: en-US
    metrics:
    - name: Wer
      type: wer
      value: 0.3600944510035419
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-tiny

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8044
- Wer Ortho: 0.3560
- Wer: 0.3601

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 384
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer Ortho | Wer    |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|
| 0.0           | 428.57 | 500  | 0.8044          | 0.3560    | 0.3601 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.1.0+cu118
- Datasets 2.14.7.dev0
- Tokenizers 0.13.3