asafaya commited on
Commit
aaeeda4
1 Parent(s): 6e94e3f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -17
README.md CHANGED
@@ -11,23 +11,19 @@ Pretrained BERT Medium language model for Arabic
11
 
12
  _If you use this model in your work, please cite this paper:_
13
 
14
- <!--```
15
- @inproceedings{
16
- title={KUISAIL at SemEval-2020 Task 12: BERT-CNN for Offensive Speech Identification in Social Media},
17
- author={Safaya, Ali and Abdullatif, Moutasem and Yuret, Deniz},
18
- booktitle={Proceedings of the International Workshop on Semantic Evaluation (SemEval)},
19
- year={2020}
20
- }
21
- ```-->
22
-
23
  ```
24
- @misc{safaya2020kuisail,
25
- title={KUISAIL at SemEval-2020 Task 12: BERT-CNN for Offensive Speech Identification in Social Media},
26
- author={Ali Safaya and Moutasem Abdullatif and Deniz Yuret},
27
- year={2020},
28
- eprint={2007.13184},
29
- archivePrefix={arXiv},
30
- primaryClass={cs.CL}
 
 
 
 
 
31
  }
32
  ```
33
 
@@ -59,7 +55,7 @@ You can use this model by installing `torch` or `tensorflow` and Huggingface lib
59
  from transformers import AutoTokenizer, AutoModel
60
 
61
  tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-medium-arabic")
62
- model = AutoModel.from_pretrained("asafaya/bert-medium-arabic")
63
  ```
64
 
65
  ## Results
 
11
 
12
  _If you use this model in your work, please cite this paper:_
13
 
 
 
 
 
 
 
 
 
 
14
  ```
15
+ @inproceedings{safaya-etal-2020-kuisail,
16
+ title = "{KUISAIL} at {S}em{E}val-2020 Task 12: {BERT}-{CNN} for Offensive Speech Identification in Social Media",
17
+ author = "Safaya, Ali and
18
+ Abdullatif, Moutasem and
19
+ Yuret, Deniz",
20
+ booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
21
+ month = dec,
22
+ year = "2020",
23
+ address = "Barcelona (online)",
24
+ publisher = "International Committee for Computational Linguistics",
25
+ url = "https://www.aclweb.org/anthology/2020.semeval-1.271",
26
+ pages = "2054--2059",
27
  }
28
  ```
29
 
 
55
  from transformers import AutoTokenizer, AutoModel
56
 
57
  tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-medium-arabic")
58
+ model = AutoModelForMaskedLM.from_pretrained("asafaya/bert-medium-arabic")
59
  ```
60
 
61
  ## Results